

Composite Design with SCIA Engineer

Official Partner of SCIA in Cyprus

Process for calculation

- 1. New > Select New Project > Analysis > OK
- 2. Project data > Basic data > Material (Concrete and Steel for composite action)
 - > Functionality > Dynamics (Seismic, General Dynamics)
 - > Subsoil (Soil Interaction, Pad foundation check)
 - > Stability
 - > Climatic loads
 - Steel (Frame rigid connections, Frame pinned connections, Grid pinned connections, Bolted diagonal connections, Expert system, Connection monodrawings)
 Structural model
 - > Loads (Wind load, Snow load from EC1) > OK
- 3. Setup > Mesh
- 4. Setup > Solver
- 5. Setup > Concrete solver
- 6. Main > Structure > Modelling/Drawing > Import DWG, DXF, VRML97 or

Main > Line grid and storeys > 3D Line grid or File > Import > IFC 2x3

- 7. Cross-sections
- 8. Storeys
- 9. Main > Structure
 - > 1D member
 - Select 1D members/ (Filter all)
 - Properties window Type of connections
 - > With standard composite action
 - > 2D member
 - Select the 2D members (slabs) and then go to properties window.
 - Element type > Composite deck
 - Element behavior > Flexible, Rigid or Semi-Rigid diaphragm
 - Profiled sheeting > Choose from the list or make one your own
- 10. Composite > Composite setup to choose shear connectors, etc
- 11. Composite > Load cases & stages (Automatically added)
- 12. Layers (For all sections and slabs per storey)
- 13. Main > Structure > Model data > Section on beam

Official Partner of SCIA in Cyprus

- 15. Main > Structure > Model data > Support
- 16. Main > Structure > Model data > <u>Hinge on beam</u> (i.e change fix or/and fiz to free)
- 17.Load > 3D wind generator > OK
 - > Add load cases > Run generator (16 load cases)
- 18. Connect Members/nodes (1D members (beams) as ribs for composite action)
- 19. Check structure data
- 20. Main > Load Cases (Selfweight, Dead, Dead-Partitions, Dead-Roof, Live, 3D wind)
- 21. Main > Load Groups (Permanent, Dead-Partitions, Dead-Roof, Variable)
- 22. Main > Loads > Dead > Surface load > on 2D member
 - > Live > Surface load > on 2D member
 - > Dead-Partitions > Line force > on 2D member edge
- 23. Mesh generation
- 24. Main > Dynamics > Mass groups (Selfweight, Dead, Live
- 25. Main > Dynamics > Combination of mass groups (Add All > OK)
 - > For "Dead" and "Live" loads below surface (also with ground floor) are NOT added to the "Combination of mass groups" because masses bellow ground surface are NOT calculated.
 - > For "Live" loads for seismic combination above ground (0+) > Used Coeff. = 0.3 (Auto)
 - > Code: $\Psi_{Ei} = \phi x \psi_{2i} = 0.3$ (Residential $\phi = 1$, $\psi_2 = 0.3$) Table A1.1 + A1.2(B) (CYS)
- 26. Libraries > Loads > Seismic spectrums (q-factor for steel)
 - > Period
 - > Eurocode
 - Code parameters > AgR*γi, q factor, Subsoil, Spectrum (Type 1),
 Direction.

27. Load > 3D wind generator > OK

- > Add load cases > Run generator (16 load cases)
- 28. Main > Load Groups (Together, Seismic)
- 29. Main > Load Cases (Seismic > Dynamic > Seismicity > CQC)
- 30. Main > Combinations (live load coeff=0.3 only for seismic combination Auto) > ULS with wind, SLS, Seismic X (0.3Y), Seismic Y (0.3X)
- 31. Main > Stability combinations (Selfweight, Dead, Live)

Official Partner of SCIA in Cyprus

32. Main > Result classes > TOTAL (ULS, Seismicity)
> GEO (ULS Set B, ULS Set C)
> SERV (SLS-Char, SLS-Quasi)
33. Properties > Buckling data
> Properties > Graphical input of system lengths
34. Analysis > Modal
35. Main > Results (Modal Participation factors Wxi , Wyi , $Wzi_R > 0.90$)
36. Main > Load Cases (Predominant mode > Mode shape per seismic direction from
Results > Participation mass)
 37. Analysis > Test of input data (Δημιουργεί τις σωστές μάζες ανά μέλος που έχει Line force)
38. Calculation > Batch analysis (Linear, Modal, Stability)
Solver setup > Use IRS in case of 2 storeys or more
39. Main > Results
40. View > New animation window > Play
41. Main > Steel > Steel slenderness
> Properties > Selection field > Standard
> Values > Lam y (/\υγηροτητα στον y) > Extreme > No > Refresh
Αλλάξτε μόνο τα Values viα Lv και Ιν και πιέστε Refresh
Properties > Ly > Refresh
> Properties > ly > Refresh
42. Main > Steel > Beams > Member check data > ULS check > Check (Preview for
Results or Table results like excel)
43.Main > Steel > Connections (for IPE, HEA, SHS, RHS > Bolts, Welds, Stiffeners,
Flanges,)
44. Main > Steel > Connections
> Select connection > Properties > Update stiffness ($$)
45. Analysis > Batch analysis (Linear, Modal, Stability)
46. Main > Results
47. In case of high Unity, Section and Stability checks you may need to add <u>LTB</u> restraints and <u>Member buckling data</u> for steel members

Official Partner of SCIA in Cyprus

Concrete foundation

48. Remove supports

- 49. Main > Structure > 2D member (Wall=Shell, Slab=Plate)
- 50. Main > Structure > Model data > Support > surface (el. foundation)
- 51. Main > Structure > Model data > Property Modifiers 1D (0.5) For 1D members below ground (0 <) change ''Mass factor'' to 0*.
- 52. Main > Structure > Model data > Property Modifiers 2D (0.5) For 2D members below ground (0<) change "Mass factor" to 0*.
- * "Mass factor" has to be zero (0) because foundations and basements have no movement because according to codes they are non-sway members.
- 53. Libraries > Load > Seismic spectrums (q-factor for concrete)
- 54. Connect Members/nodes
- 55. Check structure data
- 56. Analysis > Batch analysis (Linear, Modal, Stability)
- 57. Main > Results > Beams > Internal forces on beam

> Properties > Rib/Integration strip ($\sqrt{}$)

- 58. Main > Results > 2D member
- 59. Main > Results > 2D member > Integration strip (Strip foundation)
- 60. Main > Concrete > 2D member > Member design > Member design ULS

Properties > Use scale isolines

- 61. Main > Concrete > 2D member > Reinforcement 2D
- 62. Connect Members/nodes
- 63. Check structure data
- 64. Analysis > Test of input data
- 65. Analysis > Batch analysis (Linear, Modal, Stability)
- 66. Main > Results
- 67. Engineering Report for steel results
- 68. Engineering Report for concrete results

Για την γεωμετρία θα χρειαστεί να ενεργοποιήσετε:

Snap mode 💘 ή Snap mode

Official Partner of SCIA in Cyprus

• View > Set view parameters > Set view parameters for all

Ακόμη και αν εισάγατε αρχείο CAD στον κάνναβο σας προτιμότερο θα ήταν να δημιουργήσετε και κάνναβο ''3D line grid''.

Official Partner of SCIA in Cyprus

