

Seismic Design in Scia Engineer

Upcoming New Functionality: Storey Results & Condensed Model Analysis Scia Engineer

Webinar 26/02/2013 Stéphane Rossier

Contents

- Introduction
- Improved Generation of Masses
- Condensed Model Analysis
- Storey Results
- Modal Superposition

Introduction

Development Strategy

- Provide EC8-compliant seismic analysis tools for buildings
- First: Code-independent basis for analysis
- Then: Design & Checks

New Features

- What is coming in Scia Engineer 2013
- What is planned for further releases

New Features in Scia Engineer for Seismic Analysis & Design IMPROVED GENERATION OF MASSES

Improved Generation of Masses

• Automatic update of masses generated from loads

	lass groups			
.	la 🖉 🖬 💽 🗠	🎒 🏻 😂 🔛 Al		• 7
DL	Nan	ne	LL	
LL	Des	cription		
	Bou	ind to load case	Yes	•
	Loa	d case	LL	
	Kee	p masses up-to-date with loads		
+13.500 FL3 +5.000 FL2 +4.500 FL3 +0.000			FL3 FL3 FL2 FL1 FL1 FL1 FL1 FL1 FL1 FL1 FL1	

New Features in Scia Engineer for Seismic Analysis & Design **CONDENSED MODEL ANALYSIS**

Condensed Model Analysis

- Goal: fast modal analysis of large 3D modelization
 - →Matrix condensation techniques
 - →Improved Reduced System (IRS) for dynamic analysis
- IRS accounts for the mass matrix during condensation

Advantages of the IRS Analysis vs Full Mesh Analysis

- Smaller analysis model: typically 1'000 times less DoF than original mesh
- Elimination of most local modes
- Easier achievement of required modal mass (90% criterion)
- Full mass matrix \rightarrow allows for explicit mass eccentricity (further development)

• Step 1: enable the reduced model

Step 2: define storeys

• Step 3 (optional): choose location of reduction nodes

• That's it !

R-nodes are generated in the background during the analysis. They are not displayed as such.

R-nodes do not have to correspond to the mass center of each storey. They are placed in the

middle of the building.

• Mapping of each FE of the mesh to the closest R-node

IRS vs Full Mesh Analysis – a simple example

Full Mesh – Mode 3 – 1.21 Hz

Full Mesh – Mode 6 – 2.10 Hz

Full Mesh – Mode 8 – 2.15 Hz

Full Mesh – Mode 9 – 2.27 Hz

Full Mesh – Mode 10 – 2.30 Hz

Full Mesh – Mode 11 – 2.32 Hz

IRS – Mode 5 – 2.32 Hz

IRS vs Full Mesh Analysis – summary of eigenmodes

Full Mesh Analysis

Mode	Freq.	Wxi /	Wyi /	Wzi /
	[Hz]	Wxtot	Wytot	Wztot
1	1.15	0	0.0001	0
2	1.15	0	0	0
3	1.21	0	0	0
4	1.23	0	0	0.887
5	1.42	0	0.9981	0
6	2.10	0	0.0001	0
7	2.10	0.0004	0	0
8	2.15	0	0	0
9	2.27	0	0	0
10	2.30	0	0	0.0001
11	2.32	0.9644	0	0
12	2.47	0	0.0011	0
		0.9648	0.9994	0.8871

IRS Analysis

Mode	Freq.	Wxi /	Wyi /	Wzi /
	[Hz]	Wxtot	Wytot	Wztot
1	1.17	0	0.0003	0
2	1.17	0	0	0
3	1.23	0	0	0.8934
4	1.42	0	0.9987	0
5	2.32	0.999	0	0
6	2.71	0	0	0
7	130.72	0	0.001	0
8	205.43	0.001	0	0
9	248.14	0	0	0
10	413.53	0	0	0.1066
11	711.66	0	0	0
12	737.23	0	0	0
		1	1	1

Full Mesh vs IRS Analysis – Real Building

Full Mesh vs IRS Analysis – Real Building

Input Data	Full Mesh	IRS
Mesh size	152'988 DoF	48 DoF
Requested modes	48	48

Results	Full Mesh	IRS
Data preparation	18"	16"
Modal analysis	35"	12"
Modal mass (X/Y/Z)	63% / 61% / 50%	95% / 96% / 98%

New Features in Scia Engineer for Seismic Analysis & Design

STOREY RESULTS

Summary Storey Results

- · For mass combinations
 - Storey data: mass & mass center of each storey
 - Displacements of storey mass center per mode
 - Accelerations of storey mass center per mode

Summary storey result

Storey Displacements:

Eigen solution, Extreme: No, System: Principal Selection: All Mass combinations : CM1/1 - 2.07

Name	Ux	Uy	Uz	Phix	Phiy	Phiz
	[mm]	[mm]	[mm]	[mrad]	[mrad]	[mrad]
FL1	-6.1e-02	6.1e-02	0.0e+00	-2.0e-03	-2.0e-03	0.0e+00
FL2	-3.3e-01	3.3e-01	7.7e-02	-8.0e-03	-8.0e-03	0.0e+00
FL3	-9.9e-01	9.9e-01	1.1e-01	-1.1e-02	-1.1e-02	0.0e+00
FL4	-1.7e+00	1.7e+00	1.3e-01	-1.0e-02	-1.0e-02	0.0e+00

Summary storey result

Storey Accelerations:

Eigen solution, Extreme: No, System: Principal Selection: All Mass combinations : CM1/1 - 2.07

Name	Ax	Ay	Az	Alpha X	Alpha Y	Alpha Z
	[m/sec^2]	[m/sec^2]	[m/sec^2]	[mrad/sec^2]	[mrad/sec^2]	[mrad/sec^2]
FL1	-0.010	0.010	0.000	-3.38e-01	-3.38e-01	0.00e+00
FL2	-0.056	0.056	0.013	-1.35e+00	-1.35e+00	0.00e+00
FL3	-0.167	0.167	0.019	-1.86e+00	-1.86e+00	0.00e+00
FL4	-0.291	0.291	0.022	-1.69e+00	-1.69e+00	0.00e+00

Summary Storey Results

- For seismic load cases
 - Displacements of storey mass center
 - Accelerations of storey mass center

Summary storey result

Storey Displacements:

Linear calculation, Extreme: No, System: Principal Selection: All Load cases : EQX

Name	Ux	Uy	Uz	Phix	Phiy	Phiz
	[mm]	[mm]	[mm]	[mrad]	[mrad]	[mrad]
FL1	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
FL2	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
FL3	2.0e-03	2.0e-03	0.0e+00	0.0e+00	0.0e+00	0.0e+00
FL4	7.0e-03	7.0e-03	0.0e+00	0.0e+00	0.0e+00	0.0e+00

Summary storey result

Storey Accelerations:

Linear calculation, Extreme: No, System: Principal Selection: All Load cases : EQX

Name	Ax	Ay	Az	Alpha X	Alpha Y	Alpha Z
	[m/sec^2]	[m/sec^2]	[m/sec^2]	[mrad/sec^2]	[mrad/sec^2]	[mrad/sec^2]
FL1	0.062	0.062	0.000	1.10e-02	1.10e-02	2.37e-01
FL2	0.145	0.145	0.001	1.55e-01	1.55e-01	8.13e-01
FL3	0.170	0.170	0.003	3.32e-01	3.32e-01	2.13e+00
FL4	0.349	0.349	0.007	4.99e-01	4.99e-01	5.27e+00

Summary Storey Results

Important note

Summary Storey Results

are available only when the reduced model analysis is enabled

Results
······································
→ P ⁺ Deformed Structure
🗄 🗠 📥 Supports
🗄 🛥 Beams
±
🗄 🛲 2D Members
🚊 🕳 Storeys
Bill of material
Calculation protocol

Detailed Storey Results

- Internal forces in supporting members
 - Selection by storey
 - Extreme by member (also for walls !)
 - Walls & columns on the same drawing
 - Simple choice of section level
 - Display of average & total value for walls
 - Available for static & seismic results
 - Also suitable e.g. for load descending
 - Only pre-requisite: storeys must be defined

Detailed Storey Results

- Resultant forces in supporting members
 - Resultant for each wall on the same drawing
 - Clear display of more components
 - + all the key points mentioned previously
 - Only pre-requisite: storeys must be defined

Detailed Storey Results

- Resultant forces in supporting members per storey
 - Resultant of all supporting members at once (walls + columns combined)
 - + all the key points mentioned previously
 - Only pre-requisite: storeys must be defined

New Features in Scia Engineer for Seismic Analysis & Design MODAL SUPERPOSITION FOR RESULTANTS

Modal Superposition for Resultants

Forces at the bottom of the core	Fx	Fy	Fz	Mx	Му	Mz
Resultant from results signed after superposition	518	855	15	2509	2732	1691
New superposition of resultants	249	198	26	1900	2394	1614
Reference model (1D member)	264	209	25	1911	2429	1640