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1. Introduction

1.1

1.2.

Professional training

This course will explain the non linear and stability calculations in Scia Engineer. Most of the modules
necessary for this calculation are included in the Professional edition

For some options a concept edition is sufficient or for other options an expert edition or an extra
module is required. This will always be indicated in the corresponding paragraph.

Introduction to non linear and stability

In general, when modelling structures, a linear approach is followed. It can however be that certain
parts of the structure do not behave linearly. Examples include supports or members which only act in
compression or tension. This is where non-linear analysis is required.

Another example is when performing structural analysis following the latest codes (i.e. Eurocode 3).
When performing manual calculations, in most cases a linear 1st Order analysis is carried out.
However, the assumptions of such analysis are not always valid and the codes then advise the use of
2" Order analysis, imperfections, etc.

Scia Engineer contains specialized modules covering non-linear and stability related issues. In this
course, the different aspects of these modules are regarded in detail.

In the first part of the course, the non-linear modules are looked upon. First the 2" Order calculation
methods are explained and integrated with Eurocode 3. Next the local nonlinearities are examined
including tension-only members, pressure-only supports, cable analysis, friction supports, etc.

The non-linear part of the course is finished with an insight on how to apply imperfections according to
Eurocode 3 using Scia Engineer.

The second part of the course examines Stability calculations: the determination of the elastic critical
buckling load of a structure. This analysis can be used to calculate the buckling length of a part of the
structure or to determine if a 1% Order analysis may be carried out.

The final chapter provides some common failure messages which occur during a non-linear analysis.
This chapter points out the most likely causes of singularities and convergence failures.
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2. Non-Linear behaviour of Structures

2.1. Type of Non Linearity

The non-linear behaviour of structures can be categorised in three different groups:

- Geometrical non-linearity : The displacements are dependent on the strains in a non-linear
way.

- Physical non-linearity : The stresses are dependent on the strains in a non-linear way.
- Local non-linearity : The geometry or the boundary conditions of the structure change during

the solving of the equations.

These three types of non linearities will be examined in detail in the following chapters.
For a complete overview and theoretical background, reference is made to [1], [2], [3], [4], [5] and [6].

To be able to use non linearities in Scia Engineer this functionality should be enables in the Project
data dialogue:

Ciynamics

Initial stress

Subsoil

Stability

Climatic loads
Prestressing

Pipelines

Structural maodel
Parameters

Mobile loads
Automated GA drawings
LTA-load cases
External application checks
Property modifiers

OO0o0oo0oooooooo®ooo

And in the right column the necessary nonlinearity should be activated.

2.2. Non Linear Combinations

During a linear analysis, the principle of superposition is valid: the load cases are calculated and the
combinations are composed after the calculation.

For a non-linear analysis, this principle is not valid anymore. The combinations have to be assembled
before starting the calculation. In Scia Engineer, this is done by defining Nonlinear Combinations

=42 Load cases, Combinations
12 Load cases
I Load groups
.3 Combinations
¥ Nonlinear combinations |
Resul classes

A non-linear combination is defined as a list of load cases where each load case has a specified
coefficient.



I Nonlinear combinations
e m K|S < ¥
| NC1 | THame [NCT
Description |
Type | Ultimate j
B Contents of combination |
LCT - Selt-Weaight 11.35
LC2 - Roof load .1,5EI
LC3 - Snow 1.05
Bow imperaction Mane =
Global imperfection (Mone 1=
Mon-linear analysis after analysis O
[ MNew frorm linear cambinations “ R [=3 ] fise Delate

In addition, for each non-linear combination it is possible to specify an initial Bow Imperfection and/or a
Global Imperfection. Imperfections are regarded in Chapter 6.

Note

- The combinations defined as linear combinaticars loe imported as non-linear combinations. It isveeer
important to keep in mind that during a non-lineatculation no combinations are generated. Thisliespfor
example that code specific combinations mustliiestxploded to linear combinations. These linear
combinations can then be imported as non-linearkioations.

This method makes sure that the code coefficieniselations between the load cases are correaktgi into
account for the non-linear calculation.

- To view the extreme results for the non-linedcualation, the non-linear combinations can be gredp
within a result class.

- The amount of non-linear combinations is limited 099.
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3. Geometrical Non-Linearity — also possible with C ~ oncept edition

The options described here for the geometrical non linearities are also possible with a Concept
edition . So the Professional edition is not required for this chapter, except for the stability calculation
(and the calculation of o, as explained shortly in this chapter).

The non-linear behaviour is caused by the magnitude of the deformations.

Take for example a simple beam: during a linear analysis, the relative deformation of the end nodes, in
the direction of the beam axis is dependent on the strain of the beam.

Due to a curvature of the beam, the distance between the end nodes is changed also. This implicates
that the total strain is now not solely dependent on the displacement.

This relation can now be looked upon for different cases:
a) Small displacements, small rotations and small strains;
b) Large displacements, Large rotations and small strains;
c) Large displacements, Large rotations and Large strains;

In Scia Engineer, methods a) and b) have been implemented for the analysis of geometrical non-linear
structures. Method c) is less common in structural applications (for example rubber).

Method a) is called the Timoshenko method; method b) is called the Newton-Raphson method.

To activate the Geometrical Non-Linearity, the functionality Nonlinearity > 2 " Order — Geometrical
nonlinearity must be activated.

"Projett data @

Basicdata, Functionality ]Loads'] Combinations Protedion! Natiohal Annexes

[Cryramics o B Nonlinearity |
Initial stress = Initial defarmations and curvature m]
Subsoil o 2Znd arder - geamettioal nonlinearity.  |®
MNonlinearity = Bearn local nonlinearity |
Stahility o Support nonlinearity/Soil spring [m}
Climatic loads o Friction suppor/Soil spring o
Frestressing o B Steel |
Fipelines = Flastic hinges =
Structural model o Fire resistance [}
Farameters o Connection modeller o
Mabile loads = Frame rigid connections [m}
Crverview drawings = Frarme pinned connections o
LTA-load cases [} Grid pinned cannections [}
Bolted diagonal connections =
Expert system m]
Connection monodrawings o
Scaffolding [}
LTE 2nd Order o
Arcelar O

oK | Cancel




3.1. Overview

Global analysis aims at determining the distribution of the internal forces and moments and the
corresponding displacements in a structure subjected to a specified loading.

The first important distinction that can be made between the methods of analysis is the one that
separates elastic and plastic methods. Plastic analysis is subjected to some restrictions.

Another important distinction is between the methods, which make allowance for, and those, which
neglect the effects of the actual, displaced configuration of the structure. They are referred to
respectively as second-order theory and first-order theory based methods.

The second-order theory can be adopted in all cases, while first-order theory may be used only when
the displacement effects on the structural behavior are negligible.

The second-order effects are made up of a local or member second-order effects, referred to as the P-
0 effect, and a global second-order effect, referred to as the P-A effect.

P
H_J_'?'T
B
* |
L
I
’7'L7' * A
M(x) = Hx Mx)=sHx+P§5+Pa x/L
M(L) = HL Mh)j=HL+Pa
First Order Theory second Order Theary

On the next page an overview of the global analysis following the EN 1993-1-1, chapter 5, will be
given:

o All the rules in this overview are given in the EN 1993-1-1 art. 5. For each step the rule will
be indicated. The first rule (a., > 10) will be explained in EN 1993-1-1 art. 5.2.1(3).

o In this overview 3 paths are defined:
= Path 1: In this path a first order calculation will be executed

= Path 2: In this path a second order calculation will be executed with global (and
bow) imperfections.

= Path 3: In this path a second order calculation will be executed with the buckling
shape of the construction as imperfection.

0 The calculation will become more precise when choosing for a higher path.

o0 The lower paths will result in a faster calculation, because a first order calculation can be
executed without iterations, but this first-order theory may be used only when the
displacement effects on the structural behavior are negligible.

o Inthe next paragraphs the rules in this overview will be explained.

To take into account all non-linearities in the model, non-linear load combinations are made.
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Structural Frame Stability

5.2.1(3)
o, =10 "
ves No 5.22(3)b 522(3)a| 532(11)
Global Imperfectiorg
5.3.2(6)
5.2.2(5) No 0 Yes
O¢r 2 3 NEd> 25% Ncr Ner
R (member) *
& if & in all
requirec member

ENONNG O OO

2" Order Analysis

1% Order Analysis

O Y

Increase sway
effects with:
1

1
acr

5.2.2(3)c 5.2.2(7Mb

I, based on a global I, taken equal to L
buckling mode

No Members Yes
with g

A

Stability Check in plane
5.2.2(7)a

Stability Check out of plane + LTB Check

Section Check

With:  ng Elastic critical buckling mode.
L Member system length
Iy Buckling Length

Path 1a specifies the so called Equivalent Column Method. In step 1b and 2a “I_b may be taken
equal to L". This is according to EC-EN so the user does not have to calculate the buckling factor =1.

In further analysis a buckling factor smaller than 1 may be justified.



3.2. Alpha critical

The calculation of alpha critical is done by a stability calculation in Scia Engineer. For this calculation a
Professional or an Expert edition is necessary, so with the concept edition is this not possible. The
stability calculation has been inputted in module esas.13.

According to the EN 1993-1-1, 1% Order analysis may be used for a structure, if the increase of the
relevant internal forces or moments or any other change of structural behaviour caused by
deformations can be neglected. This condition may be assumed to be fulfilled, if the following criterion

is satisfied:
F,
Aer = % = 10 for elastic analysis
With: g the factor by which the design loading has to be increased

to cause elastic instability in a global mode.

Feq: the design loading on the structure.

Fer: the elastic critical buckling load for global instability,
based on initial elastic stiffnesses.

If o, has a value lower then 10, a 2™ Order calculation needs to be executed. Depending on the type
of analysis, both Global and Local imperfections need to be considered.

EN1993-1-1 prescribes that 2" Order effects and imperfections may be accounted for both by the
global analysis or partially by the global analysis and partially through individual stability checks of
members.

The calculation of Alpha critical and also Path 3 from the diagram of the previous paragraph will be
explained in the chapter “Stability”.

Example: Imperfections2D.esa

The diagram is now illustrated on a steel frame including a global imperfection. This benchmark project
is examined in detail in references [20] and [23].

A stability calculation for the frame gives a critical load factor o, of 13,17 > 10

This indicates that 2™ Order effects are negligible and a 1* Order analysis may be used for the
structure.

Path 1a can thus be followed and a 1% Order Calculation is executed.

A Steel Code Check gives the following results:

When Path 2a is followed, using a Global imperfection and a 2" Order Calculation according to
Timoshenko , the Steel Code Check shows the following:
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It can be seen that the results are practically the same which is as expected since the a is larger then
10.

The input of imperfections and execution of a Stability Calculation will be regarded in detail further in
this course.

3.3. Imperfections

When performing a non-linear calculation, it is possible to input initial geometrical imperfections: initial
deformations and curvatures. These imperfections take into account the fact that the structure is for
example a bit inclined instead of perfectly vertical or that the members are not completely straight.

To input geometrical imperfections, the functionality Nonlinearity > Initial deformations and
curvature must be activated.

Project data
Basic data  Functionality i Loads i Combinations | Protection ] BNational Annexes ]
i 2 o B Monlinearity
Initial stress a Initial detormations and curvature |=
Subsoil = | 2nd order - geometrical nonlinearity ]
MNonlinearity = Eearn local nonlinearity a
Stability a Support nanlinearity/S il spring o
Clirnafic loads a Friction support/Sail spring a
Prestressing a Membrane elements |
Pipelines a B Steel |
Structural model a Flastic hinges |
Parameters a Fire resistance a
tobile loads a Connection modeller ]
Overview drawings = Frame rigid connections a
LTA- load cases = Frame pinned connections ]
Grid pinned connections a
Bolted diagonal connections ]
Expert system m}
Connection monodrawings a
Scaffolding m}
LTB 2nd Crder O
Arcelor O
Ok | Cancel

For each non-linear combination, the imperfections can then be set.



(I Nonlinear cembinations

A BE 0 & A - i
M1 [ Name NCT
Cescription
Type Ultimate j
E | Contents of combination .
LCT 11,00
Bow imperection Mone _'j
Global imperfection |§ Mone s
Mar-linear analysis after analysis Mong i} mj
Simple inclination

Inclination functions
Deform. from loadcase

[- NewfromIinearcumbination;. ][ RI=T ][ Inser ][ Edit ][ Delete ]

Difference is made between Global imperfections (Initial deformations) and Bow Imperfections
(Curvatures).

3.3.1. Global frame imperfection ¢

The nodal coordinates define the geometry of the structure. Using initial deformations as global
imperfections, additional displacements (in X and Y direction) can be inputted. These displacements
will thus alter the geometry.

The structure itself can therefore be modelled as straight; the inclination is given by the global
imperfection.

The global imperfection can be set in the following ways:
- Simple Inclination
- Deformation from Load case
- Inclination Functions

- Buckling Shape

Simple Inclination
The imperfection is defined as a simple inclination. The inclination is defined in mm per m height of the

structure. More specifically a horizontal displacement is given in the global X and/or Y direction which
has a linear relation to the height (global Z direction).

Deformation from Load case
The imperfection is defined by the displacements of a specified load case. This option can be used to

take into account for example the imperfections due to the self-weight. Especially for slender beams
this can be important.

Inclination Functions

The imperfection is defined by a deformation-to-height curve, similar to the Simple Inclination. The
curve can then be assigned to an appropriate non-linear combination.
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These inclination functions are entered through “Main -> Library -> Structure, Analysis -> Initial
deformations”

Libraries Tools Modify Tree Plugins Setup Window Help

Materials _ JJE@ Eﬁﬂ 2 4 F2 F2 |
Cross-sections F'H @m@@zj@m|§ﬁ@

Setup

Catalogue blocks

Named e K]

Bl 8 i & @

Structure, Analysis Cross-section list
Steel 4 Section matrix
Bl concrete, reinforcement B Fabricated Css, Product range, Joists
B subsoil, foundation . Nonlinear functions
oz Wl eomatons
Fire heat » % Buckling
Heat transfer » ml
Drawing tools »
! Attributes definition

When the type is set to Manually , the function can be inputted by specifying the height and the
horizontal displacement.

Initial deformation m
Typ
IFunct\onX ‘
Tupe
’7 Imanually VI
12_ 12
10
8]
6] Posin] | Deforfmm] |
1 0,000 0.0
2 |5,000 250
4] 3 10,000 60.0
4 112,000 110.0
2]
0]
o [= =) =] = ==
ol =f o o0 =1 =]
ok I Cancel |

The type Factor allows a factor to be inputted at each height. In the definition of a non-linear
combination, a manually inputted function can then be multiplied by this factor function.

When choosing According to code , the inclination function is calculated according to the code. As

shown during the 2" Order calculations, Eurocode 3 ref.[27] defines the global imperfection the
following way:

10



h
y
1
? =500 % Am
2 2
an =z but ;San=<10

-

‘Initial deformation

The height of the structure in meters

The number of columns in a row including only those columns which carry a vertical

load Ngq4 not less than 50% of the average value of the vertical load per column in

the plane considered.

MNarne —

]Fundion

e

—Basicimperfectionvalue: 1 /-

1/ |20

— Height of structure ;-

—Mumber of colurmns per plane :—

Jaccordingto code
20 it
4

Cancel

o]

|

These parameters can be inputted after which the imperfection is automatically calculated:

11
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Marme | Function _
Twpe ;according to code L’
Basicimperfection value : 1/ 200.00

Height of structure : [m)]

K| s o F 1A
LT ET O ColLmns

Fi:
alfah:

alfam:

An inclination function is defined independent of an axis. This means that the same function can be
used to define the displacement in X in function of Z, or Y in function of Z, or X in function of ...

In the definition of a non-linear combination, it can be specified between which axes the function
defines a relation.

B Nonlinear combinations .fi
Aiv s v - & -
S [
M2 Description
NC3 Type Litimate j
hA B Contents ol combination
:Cc: BGT - SeltWaight [-] 150
NET BGE - Serace load 28% Ful., 150
NCB BiGE = Mewirnal Wind load 7., 1.50
NCS l.ﬂn:.mn@a’m Simple cursatyre -
MC 10 Global imperfecton Inclination funclions -
MCL1 1 I
MC12 14 200
MNZ13 inrlinati i
NC14 i 3 Dist 3 -
Ei: Factor Hang x:
NC1T Sense b =
NC1E ¥ Mane i
M 1% B dy inclination functions
Mo 20 z Maone j
MC21 b Mene =}
EZE B dz inclination functions
23 h o Mone o
NC24 ¥ Maong 5
NC2Z5 =
NC26
NCZ7
NC28
NC22
NC30
MZ31
MZ32
Mew from linear combinations H Beaw |[ Insent EI Edit ||_ Delete l Cloze E

The Sense option allows the imperfection to be applied in the positive or negative direction (according
to the chosen global direction). This way, a non-linear combination can for example be copied, where
the original has a positive sense and the copy a negative sense to take into account both possibilities.

Instead of the Sense, the Factor function can be applied as specified above. The values of the factor
function will be multiplied with the values of the defined inclination function.

12



Buckling Shape

As an alternative to Global and Local imperfections, paragraph 5.3.2(11) of Eurocode 3 Ref.[27] allows
the use of a buckling shape as a unique imperfection. For this option the Professional or Expert edition
is necessary. This option has been inputted in module esas.13.

To input geometrical imperfections, the functionality Nonlinearity > Initial deformations and
curvature and Stability must be activated.

Project data @
Basicdata Functionality 1 Loads ] Combinations | Protection | Mational Arnexes
Dynarmics o B Nonlinearity |
Initial stress o Initial defarmations and curvature ]
Subsail o Pl arder- geometncal nowline ||:|
MNonlinearity = Beam local nonlinearity ]
Stability = Support nonlinearity/Soil spring a
Climaticloads a Friction support/Soil spring a
Presiressing a B Steel |
Fipelines a Flastic hinges O
Structural model a Fire resistance a
 Parameters a Connection modeller m}
Mohile loads m] Frame rigid connections O
Owerview drawings ] Frame pinned connections O
LTA-load cases m] Grid pinned connections O
Eolted diagonal connections O
Exper system O
Connection monodrawings O
Scaffolding O
LTE 2nd Order m}
Arcelor [m]
QK Cancel |

The calculation of the buckling shape through a stability calculation will be looked upon in Chapter 6.
Since the buckling shape is dimensionless, Eurocode gives the formula to calculate the amplitude n,;;

of the imperfection. In Ref.[29] examples are given to illustrate this method. In this reference, the
amplitude is given as follows:

N
Tt =& O mer

E D y m7cr max
1-X )
e=afi-02)Mepn Y o Js02
N 1-x [(/1)2
with: A= VR
cr
a= The imperfection factor for the relevant buckling curve.
X = The reduction factor for the relevant buckling curve, depending on the

relevant cross-section.

Nrc = The characteristic resistance to normal force of the critical cross-section, i.e.
Nopi,Rk-

Ng =  Elastic critical buckling load.

Mgk = The characteristic moment resistance of the critical cross-section, i.e. Mg rk
or Mg gk as relevant.

Ne =  Shape of the elastic critical buckling mode.

= Maximal second derivative of the elastic critical buckling mode.

13
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The value of n;,; can then be entered in the field Max deformation .

— | Nonlinear combinations
KL 4 SRR R -
MNC1 [ WC1
Description
Type Ultimate j
B Contents of combination
LCZ - Load 115537 kN 1,00
Bow imperfection MNaone hd
Global imperfection Buckling shape |
Stability 51 hd
Eigen shape 1
Max deformation [mm] h2.4
Mew from linear combinations | Mew | Insert | Edit | Delete | Close

This procedure will be illustrated in further in this course in the Chapter 6 concerning Stability.

3.3.2. Initial bow imperfectione o

During a linear calculation, the members are taken to be ideally straight. Using bow imperfections, a
local curvature can be defined for each element. A normal force in a member will thus lead to additional
moments. These additional moments shall only be taken into account for members with compressive
forces.

To obtain correct results using bow imperfections, it is required to refine the number of 1D mesh
elements .

The local imperfection can be set in the following ways:
- Simple Curvature
- According to Buckling Data
Scia Engineer will automatically apply the curvature in the following way, which is in most cases the de-
favourable sense:
After the first iteration step, the deflection in the middle determines the sign of the initial bow

imperfection. If there is no deflection the alternating pattern is used and the beam will deform with a
sinusoidal form through its nodes.

Simple Curvature

Using this option, a curvature can manually be inputted. This curvature will be used for all members in
the project. This method is quite convenient when the same type of cross-section (buckling curve) is
used throughout the project like for example scaffolds, framework,...

14



According to Buckling Data

A bow imperfection according to buckling data allows the user to specify different curvatures for each

used buckling data. In the Buckling and relative lengths

imperfection can be set.

Buckling and relative lengths.

properties of a member, the bow

X]

Base satings. | Buekiing data |

[~ Xdiagonals

Name  [BCT

Number of parts

Buckling systems relationship

2= |z
s |z

It=" ez

Felative deformation systems relationship
defz= [y

[ “Warping check

Buckling systerm

- ky factar ]Ca\:u\ale

= kefactor | Calculate

- Swayyy |acc to Steel>Beams>Setup

Sway zz ‘a:: o Steel>Beams>Setup

Influgnce of load position | Mormal

2 A N A A A

(=13 ]Ca\:u\a{ed

Eow imperfection

|L )

eody  |manually input of bow imperfection
accarding to code - elastic’ %

according to code - plastic

according to code - elastic - only if required

according to code - plastic - only if required

manually input of bow imperfection

no bow imperection

eodz

-

|standard method E2|

As seen during the 2" Order calculations, Eurocode 3 Ref.[27] defines the initial bow imperfection

using the following table:

When the options According to code elastic/plastic
buckling curve of the member and will apply the specified imperfection automatically on the member.
This imperfection is always applied which corresponds to Path 2c of the diagram seen during the 2"

Order calculations.

The options According to code elastic/plastic — only if require
the normal force Ngg in @ member is higher than 25% of the member’s critical buckling load N, as

Buckling curve | elastic analysis | plastic analysis
acc. to Table 6.1 g/ L g/ L

ag 1/350 1/300

a 1/300 1/250

b 1/250 1/200

C 1/200 1/150

d 1 /150 1/100

Where L is the member length.

are chosen, Scia Engineer will check the

specified in Eurocode. This corresponds to Path 2b of the diagram.

d will apply the imperfection only if
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When selecting Manually input of Bow Imperfection , the imperfection can manually be inputted
using the tab Buckling Data .

Buckling and relative lengths. =]
Base settings  Buckiing data I
w | ley | Sway yy ‘ o dy [mm] | 2z kz Sway 7z | eo dz [mm] ‘ lyz ‘ kit k lew |
1 |E Fixed acc.to Ba.. 2500 Fixed acc.to Ba.. | 20,00 1.00 1.00 1.00 1.00
2 |0 Free Fixed acc.to Ba... | 10,00 1,00 1,00 1,00 1,00
3 |B& Fixed B Fixed

oK I Cancel Apply

This way, the imperfection can be manually inputted for each member. This is in contrast to the Simple
Curvature where the same bow imperfection is applied to all members.

When using bow imperfections it is important to set correct reference lengths for buckling since these
lengths will be used to calculate the imperfection.

Example: Imperfection_Manual.esa

In this project, the principle of a bow imperfection is illustrated for a simple beam.

The beam is modelled once as ideally straight (B1). Next the beam is modelled as curved with a
deflection at midpoint of 200mm (B2). In the third case, the beam is taken as straight and a bow
imperfection of 200mm is manually set through the Buckling Data (B3).

B! = F1/-5.00
B2

s T F3/-500
8 F2 / =5.00

The buckling data of B3 shows the following:
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g and relative lengths. w

Base settings  Buckiing data I

w | ky | Swayy |eodym] | 2z kz | Swayzz |eodzfom] | ky | Kt k lew |
1 |BE Fixed acc.to Ba... 200,00 Fixed acc.to Ba 1.00 1.00 1.00 1.00

2 |E Fxed B Fixed

oKk | Cancel Apply

The three beams are loaded by a normal force of 5 kN. Those with a deflection of 200 mm, are
expected to have a moment of 1 kNm in the middle of the beam.

The moment diagram after a non-linear calculation shows the following:

E1 F1,/ -5,00

—1,00 kNm
F3/ -5,00

—1,00 kNm
m F2 /=500

NN

It
E=) X

As expected, the beam B1 does not produce a bending moment. Both the curved beam and the beam
with imperfection yield the 1 kNm.
This example shows that the bow imperfection corresponds to a curved calculation model.

Example: Imperfection_Self_Weight.esa
A tube on two supports is loaded by its self weight and a compression load of 20 kN.

The tube is manufactured in S235, has a cross-section RO 48,3 x 3,2 and length 5m.
A linear calculation results in a bending moment of 0,109 kNm:
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z

0,109 kNm

This moment is caused entirely by the self weight of the tube:

Area: 453 mm2 = 0,000453 m?
Volumetric mass: 7850 kg/m3
Length: 5m

= Loading caused by the self weight: 7850 kg/m3 x 0,000453 m2 x 9,81 m/s?
= 34,88 N/m = 0,03488 kN/m

= Moment caused by the self weight: (0,03488 kN/m x 5m x 5m) / 8 = 0,109 kNm

The self weight causes a deformation of 11,659mm

N~

—11,659 mm

Due to the fact that the self weight causes this deformation, the compression force of 20 kN will lead to
an additional moment.

To see this effect in detail, a non-linear analysis is carried out which takes into account the deflection
caused by the self weight. The deformation of the self weight can thus be set as a Global
Imperfection .

-
—1 Nonlinear combinations
KL 4 ) = .
MC1 ]
Description
Type Uttimate: ﬂ
B Contents of combination
LC1 - Seff Weight 1.00
LC2 - Compression Force 20 kM 1.00
Bow imperfection None P
Global imperfection Defom. from loadcase d
Load case LC1 hd
Mew from linear combinations | Mew | Insert | Edit ‘ Delete | Clozse

The non-linear calculation results in a moment of 0,342 kNm
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0,342 kNm

This value can be calculated as follows:
Imperfection due to the self weight: 11,659mm = 0,011659m

Compression force: 20 kN

= Additional Moment: 20 kN x 0,011659m = 0,23318 kNm
Moment caused by the self weight: 0,209 kNm

= Total moment: 0,109 kNm + 0,23318 kNm = 0,342 kNm

Itis clear that taking into account the deflection of the self weight has a large influence on the results.
In this example, the bending moment increases with more than 200%. Especially for slender beams the
imperfection due to self-weight can be important.

3.3.3. Example Global + Bow imperfection

In this chapter a general example on the Global and bow imperfections in Scia Engineer.

Example: Steel_Depot.esa

To illustrate the use of imperfections, both sway imperfections and bow imperfections are inputted on
the columns of a steel depot.

The structure has the following layout:

The diagonals have been inputted as Tension only members.
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Inclination functions
automatically:

are defined According to the code

so the initial sway is calculated

[T Initial deformations

Bemk g G S-| Al -

Fi:
alfah:
alfam:

Def_x
Daf Y
MNarme | Det
Type according_ to code j
Basicimperection value 11/ 200.00
Height of structure : [m] 6,900
MNumber of columns per plane

1n

Mew elate

The Buckling data of the columns is edited to specify Bow Imperfections According to the code

Buckling and relative lengths.
Base sefings | Buckling dalal
MName |Colurn Mumber of pans
Buckling systems relationship
T
2= 22 v ky factor 1Fﬁmnr ﬂ
yi= oz | kz factor 1Fﬁmnr ﬂ
= = Swayyy |ace lo SteebBeams>Setup >
Swayzz |acc to SteebBeams»Seup >
Influence of load position iNnrma\ ﬂ
kcr ICalcu\ﬂted ﬂ
i~ Bowimperection-
oy |at:t:nrdmg to code - elastic Lj
eodz Ia::nrdmgm cods - elastic L%
Rielative deformation eystems relationship
detz= |y - defy= a2 -
T Warping check
[~ %diagonals Buckling system Standard method L]
oK Cancel ] el 1

Since Global and Local imperfections are used for the columns, a buckling check needs not to be
executed conform Path 2c¢ of the diagram seen during the 2" Order calculations. To take this into
account in Scia Engineer, the buckling factors can be manually set to a low value so buckling will not

be normative.

The Fundamental ULS combination according to Eurocode can then be exploded to linear
combinations which can be imported as Non-Linear combinations. The Bow imperfection is set

According to Buckling Data

and the Global Imperfections are set through the Inclination functions

Since sway imperfections need to be considered in one direction at a time, the non-linear combinations

are taken once with the sway in X-direction and once with the sway in Y-direction.
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—J Nonlinear combinations
kLR 4 =& A -
SRS
Description
NC3 X Type Utimate -
N4 X Contents of combination
NCS X L1 - Seff Weight 135
NCE X LC2 - Weight Cladding 135
NC7 X Bow imperfection According to buckling data d
NCE X Global imperfection Inclination functions j
NCQ X dx inclination functions
NC10 X z Def_X =l
NC11 X Factor None j
NC12 X Senze - |
NC13 X Y MNone j
NC14 X dy inclination functions
NC15 Y z None |
NC16 Y X None j
NC17Y dz inclination functions
NC18 Y X MNone d
NC19 Y Y None j
NC20'Y
NC21Y
NC22Y
NC23 Y
NC24 Y
NC25Y
NC26 Y
NC27 Y
NC28Y
Mew from linear combinations New Insert Edit Delete Close

_——————————— ——"7">°>°>"7>7°°7°7°5°>> |

If required, this number of combinations can de doubled to change the sense of the sway
imperfections.

To obtain correct results for the Bow imperfections, the finite element mesh is refined.

[ Mesh setup @
= Mesh
Minirmal distance between two points [m) 0.001
Awerage number of files of 10 element I3
Awerage size of 2D element/curved element [m] 1.000
1D elements
Hanging nodes for prestressing O

4| @4 o] o |

A 2" Order calculation can then be carried out using Timoshenko’'s method

The Steel Code check for the mid columns yields the following result.
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(l

Since both global and local imperfections have been inputted, only the Section check and the Lateral
Torsional Buckling check are relevant. In this example, member B9 produces the largest check on the
compression and bending check.

3.4. The second order calculation

3.4.1. Timoshenko

The first method is the so called Timoshenko method (Th.II.O) which is based on the exact
Timoshenko solution for members with known normal force. It is a 2" order theory with equilibrium on
the deformed structure which assumes small displacements, small rotations and small strains.

When the normal force in a member is smaller than the critical buckling load, this method is very solid.
The axial force is assumed constant during the deformation. Therefore, the method is applicable when
the normal forces (or membrane forces) do not alter substantially after the first iteration. This is true
mainly for frames, buildings, etc. for which the method is the most effective option.

The influence of the normal force on the bending stiffness and the additional moments caused by the
lateral displacements of the structure (the P-A effect) are taken into account in this method.

This principle is illustrated in the following figure.

L
M(x) = Hx M(X) =Hx+P &+ P Ax/L
. M(L) = HL M(L)=HL+PA
First Order Theory Second Order Theory
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The local P-d effect will be regarded further in this course.

If the members of the structure are not in contact with subsoil and do not form ribs of shells, the finite
element mesh of the members must not be refined.

The method needs only two steps, which leads to a great efficiency. In the first step, the axial forces
are solved. In the second step, the determined axial forces are used for Timoshenko’s exact solution.
The original solution was generalised in Scia Engineer to allow taking into account shear deformations.

The applied technique is the so called ‘total force method’ or ‘substitution method'. In each iteration

step, the total stiffness of the structure is adapted and the structure is re-calculated until convergence.
This technique is illustrated in the following diagram.
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Calculate Kk

Solve Ku=F

No

Convergence
inu?

Yes

ST

In this figure, the stiffness K is divided in the elastic stiffness Kg and the geometrical stiffness Kg. The
geometrical stiffness reflects the effect of axial forces in beams and slabs. The symbol u depicts the
displacements and F is the force matrix.

The criterion for convergence is defined as follows:

Y(uZ; + uj; + uz)—Y(uZ; . + uy 4+ uZ; ;)

2 2 2
2:(ux,i + uy,i + uz,i

< 0,005/(precision ratio)

With: Uy, The displacement in direction x for iteration i.
Uy, The displacement in direction y for iteration i.
Uy The displacement in direction z for iteration i.

This convergence precision (Precision ratio) can be adapted in the solver setup:
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M Solver setup

X

MName
B Solver
Advanced solver options ]
Meglect shear force deformation { Ay, Az == A) ]
Type of solver Direct
Mumber of sections on average member 10
Maximal acceptable translation [mm] 1000.0
Maximal acceptable rotation [mrad] 100.0
B Nonlinearity
Maximum iterations 100
Geometrical nonlinearity - Il. order Timoshenko
ue =] o =} o =} =}
B Stability
Mumber of critical values 2

LAEalC

oK

l l Cancel

The diagram is illustrated on the following figure.

FA

ul u2 u3 wdus u’

The choice of the Timoshenko Method and the maximal amount of iterations can be specified through

Calculation, Mesh > Solver Setup.
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"1 Solver setup
E Solver
Advanced solver options O
Proper FEM analysis of cross-section parameters ( be, Ay, Az ) O
Neglect shear force deformation { Ay, Az »> A) O
Type of solver Direct =]
Number of sactions on average member 10
Maamal acceptable translation fmm] 1000.0
Maamal acceptable rotation [mrad] 100.0

'

Maxdmum terations 50

Geometrical nonfineanty - Il order Timoshenko |
MNumber of increments

Coefficient for reinforcement 1

oK | Cancel

Example: Timoshenko.esa

In this benchmark example, a frame is calculated both in 1* and 2" Order using the Timoshenko
method. The influence of the 2™ Order effects is seen to be significant.

The results are compared with the results from reference [7] ‘Stahl im Hochbau’ p256.

Stahl im Hochbau Scia Engineer
M21 602.2 (227.1) kKNm 590.33 (227.08 ) KNm
M32 506.0 ( 224.9 ) KNm 485.34 (224.86 ) kNm
M34 779.9 (343.0) kKNm 763.07 (342.92 ) kKNm

The results between brackets are those for the first order analysis.

The Moment-diagram for the 1% Order analysis shows the following:

—224.86

253.67

A significant increase of the moments is seen for the 2" Order analysis :
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-485.34

590.

590.3

3.4.2. Newton-Raphson

The second method is the so called Newton-Raphson method (Th.III.O) which is based on the
Newton-Raphson method for the solution of non-linear equations.

This method is a more general applicable method which is very solid for most types of problems. It can
be used for very large deformations and rotations; however, as specified the limitation of small strains

is still applicable.

Mathematically, the method is based on a step-by-step augmentation of the load. This incremental
method is illustrated on the following diagram:
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ChooseAF
U=0
Fo =0

Determine k at iy

A 4

Solve K. Au=F U=u
Determine ki

| 5

u=uw+Au

No

Convergence
inu?

The following figure shows this process graphically.

FA

it. 1 it. 2

4

=~
]
© KT
) \
AN
-
<
|59
N >
u

—

0 | deltau |~

In this figure, the tangential stiffness Ky is used. The symbol u depicts the displacements and F is the

force matrix.
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The original Newton-Raphson method changes the tangential stiffness in each iteration. There are also
adapted procedures which keep the stiffness constant in certain zones during for example one
increment. Scia Engineer uses the original method.

As a limitation, the rotation achieved in one increment should not exceed 5°.

The accuracy of the method can be increased through refinement of the finite element mesh and by
increasing the number of increments. By default, when the Newton-Raphson method is used, the
number of 1D elements is set to 4 and the Number of increments is set to 5.

In some cases, a high number of increments may even solve problems that tend to a singular solution
which is typical for the analysis of post-critical states. However, in most cases, such a state is
characterized by extreme deformations, which is not interesting for design purposes.

The choice of the Newton-Raphson Method, the amount of increments and the maximal amount of
iterations can be specified through Calculation, Mesh > Solver Setup.

1 Solver setup
Bl Solver
Advanced solver options ]
Proper FEM analysis of cross-section parameters ( bk Ay, Az ) O
Meglect shear force deformation | Ay, Az => A) O
Type of salver Direct ﬂ
Mumber of sections on average member 10
Mazximal acceptable translation [mm] 1000,0
Maximal acceptable rotation [mrad] 100.0
B Nonlinearity
Maximum iterations )
Geometrical nonlinearity - 11. order Mewton-Raphson |
MNumber of increments 5
Coefficient for reinforcement 1
ok | Cancel

As specified, the Newton-Raphson method can be applied in nearly all cases. It may, however fail in
the vicinity of inflexion points of the loading diagram. To avoid this, a specific method has been
implemented in Scia Engineer: the Modified Newton-Raphson method.

This method follows the same principles as the default method but will automatically refine the number
of increments when a critical point is reached. This method is used for the Non-Linear Stability
calculation and will be looked upon in Chapter 6.

In general, for a primary calculation the Timoshenko method is used since it provides a quicker solution
than Newton-Raphson due to the fact Timoshenko does not use increments. When Timoshenko does
not provide a solution, Newton-Raphson can be applied.

Example: N_R_Beam.esa

This project is used to illustrate the capability of the Newton-Raphson method regarding large
deformations and large rotations.

The structure consists of a cantilever beam which is loaded by a moment at the free end. The rotation
at the free end is given by:

_M-L

P=FE
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When ¢=21, the beam will form a complete circle. The moment required for this rotation is:

2 E -1
Zn:T

The member considered has a length of 10m and a cross-section type IPE200. The parameters in this
case are:

E = 210000 N/mm?2

L = 10000 mm
=1.943 10" mm*

This leads to a moment M,,=2563,73 kNm.

Since the rotation in one increment is limited to 5°, about 80 increments are needed. To obtain precise
results, a dense mesh is required.

A calculation using Newton-Raphson with 80 increments and 40 mesh elements for the beam gives the
following results:

Deformations on member

Monlinear calculation, Extreme : Global, System : Principal

Selection : All
Monlinear combinations : NC1
Case Member dx ux uy uz fix fiy fiz
[m] [mm] [mm] [mm] [mrad] [mrad] [mrad]
NC1 B1 10.000 | -9998.4 0.0 14 0.0| 62839 0.0
NC1 B1 0.000 0.0 0.0 0.0 0.0 0.0 0.0
NC1 B1 5.000| -50004 00| -3186.7 00| 3417 0.0

The displacement of nodes shows the following for fiy :

6283.9

Example: N_R_Membrane.esa
This project illustrates the (positive) influence of the membrane forces on the results.

A steel plate is loaded by a surface load, perpendicular to the member system-plane. A 1* Order
calculation gives the following deformations:
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Uy [mm]

234.7
75.0
70.0
85.0
60.0

55.0

A 2" Order calculation using Newton-Raphson will take into account the development of membrane
forces in the plate. These tensile membrane forces will have a positive effect on the stiffness on the

plate and will thus reduce the deformations.

The results are showed below.

=

Remark

As explained before, Timoshenko is not valid for high deformations. So for this example, Timoshenko
would lead to incorrect results and this method does not take into account (positive) influence of the
membrane forces on the results. The deformations calculated with Timoshenko are the following:
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| Uy

83.2
84.0
78.0
720
66.0
80.0
54.0
48.0
420
35.0
30.0

24.0

18.0

12.0
6.0
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4. Physical Non-Linearity

When the stresses are dependent on the strains in a non linear way, the non linearity is called a
physical non linearity.

In Scia Engineer, the following types of physical non linearities have been implemented:
- Plastic Hinges for Steel Structures

- Physical Non-Linear analysis for Concrete Structures

4.1 Plastic Hinges for Steel Structures

When a normal linear calculation is performed and limit stress is achieved in any part of the structure,
the dimension of critical elements must be increased. If however, plastic hinges are taken into account,
the achievement of limit stress causes the formation of plastic hinges at appropriate joints and the
calculation can continue with another iteration step. The stress is redistributed to other parts of the
structure and better utilization of overall load bearing capacity of the structure is obtained.

The material behaves linear elastic until the plastic limit is reached after which it behaves fully plastic.
The o-¢ diagram thus has the same shape as the Moment-Curvature diagram:

A

M

Mp

The full plastic moment is given as M,, the curvature as k.

In Scia Engineer, a plastic moment can only occur in a mesh-node . This implies that the mesh needs
to be refined if a plastic hinge is expected to occur at another location than the member ends.

The reduction of the plastic moment has been implemented for symmetrical I-shaped cross-sections
according to the following codes: EC3, DIN 18800 and NEN 6770.

There is off course a risk when taking plastic hinges into account. If a hinge is added to the structure,
the statically indeterminateness is reduced. If other hinges are added, it may happen that the structure
becomes a mechanism. This would lead to a collapse of the structure and the calculation is stopped.

On the other hand, plastic hinges can be used to calculate the plastic reliability margin of the structure.
The applied load can be increased little by little (e.g. by increasing the load case coefficients in a
combination) until the structure collapses. This approach can be used to determine the maximum load
multiple that the structure can sustain.
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To take into account Plastic hinges for Steel Structures, the functionality Nonlinearity > Steel >
Plastic Hinges must be activated.

Project data [Z|
| Basic data| Functionality !Loads; | Combinations | Protection |
Dynamics [} E Nonlinearity
Initial stress a Initial deformations and curvature o
Subsoil O 2nd order - geometrical nonlinearity O
EI Beam local nonlinearity o
Stability ] Support nonlinearity/Soil spring O
Climatic loads o \Friction suppori/Soil spring =
Prestressing [} Sequential analysis o
Pipelines a B Steel
Structural model O Plastichinges [
Parameters a \Fire resistance o
Mobile loads ] Connection modeller ]
Automated GA drawings a \Frame rigid connactions a
LTA-load cases [} Frame pinned connections ]
External application checks a Grid pinned connections o
Property modifiers O Eolted diagonal connections O
Expert system o
Connection monodrawings O
Scaffolding =
LTE 2nd Order ]
ArcelorMittal O
[_ oK ] [ Cancel ]

The choice of code which needs to be applied can be specified through Calculation, Mesh > Solver

Setup.
7 Solver setup
B Solver
Advanced solver options O
Proper FEM anahysis of cross-section parameters | b, Ay, Az ) O
Neglect shear force deformation { Ay, Az == A) O
Type of solver Direct LI
Number of sections on average member 10
Maximal acceptable translation [mm] 1000.0
Maximal acceptable rotation [mrad] 100.0
B Nonlinearity
Meaxdmum iterations 50
Plastic hinge code | No code LI
Coefficient for reirforcement Mo code
EC
DIN %
MEN
ak. I Cancel |
|

Example: Plastic_Hinges.esa

In this project, a continuous beam is considered. The beam has a cross-section type IPE 330 and is
fabricated in S235.
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According to Eurocode 3, the plastic moment around the y-axis is given by:

M _ Woly'ly
plyd —
Ymo

For the beam considered this gives the following:

f, = 235 N/mm?
Wy, = 6.28 10° mm3
wwo=1.1

= Mp|'y'd = 134.2 kNm

A linear analysis shows the following Moment-diagram:

-178.39

B /h\
U 2 LR

101.44

A non-linear analysis taking into account plastic hinges gives the following result:

—-134.24

. A
AL LT

119.10

When the load is increased further, another plastic hinge will form in the middle of a span thus creating

a mechanism and showing the next window after calculation:

.

FEM solver

f‘_‘ Too many unrestrained degrees of freedom of element o, 4 (macro B1)
s probably constructon got plastc.

4.2 Physical Non-Linear analysis for Concrete Struc  tures

This topic is regarded in detail in the course “Advanced Training Concrete”.
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5. Local Non-Linearity

The local non linearities can be defined for 1D members, connections between 1D members, 2D
members and supports.

The following types have been implemented in Scia Engineer:
- Beam local nonlinearity
- Beam local nonlinearity including initial Stress
- Non-linear member connections
- Support nonlinearity
- Pressure only elements

- 2D Membrane Elements

5.1. Beam Local Nonlinearity — also available inth e concept edition

The options described in this chapter are also possible with a Concept edition . So the Professional
edition is not required for this chapter.

To input local nonlinearities for 1D members, the functionality Nonlinearity > Beam local nonlinearity
must be activated.

B hG
Basic dats  Functionality i Loads I Combinations | Protection i

Dyniamics [ Bl Nonlinearity |
Initial stress O Intial deformations and curvature O
Subsail O 2nd order - geometrical nonlfinearity |01
Monlinearity & _Beamocal nonlinearty @
Stability O Support nonlinearity O
Climatic loads O Friction support O
Prestressing _|:| Monlinear line support _I:l
Fipelines [} Membrarie elements O
CAD shape a Steel
Farameters O
Mobile loads O
Oiverview drawings O
LTA - load cases O

oK I Cancel

The non-linearity can then be inputted in the =1 Structure menu through <= Beam - nonlinearity
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("] Beam nonlinearity

! I ‘ MName EN1 _

Twpe |: Press only
/‘ u Fossony
Tension anly
I Limit force

Gap
/ u

e R

N

Ok, | Cancel

The following types are available:
- Pressure only
- Tension only
- Limit force

- Gap element

All those options are explained with examples in the chapters below.

5.1.1 Members defined as Pressure only / Tensionon ly

Pressure only: the member is only active under pressure (i.e. strut, ...)
Tension only: the member is only active under tension (i.e. anchor, diagonal, ...)
When using this type of beam non-linearity, it can happen that numerically a very small

pressure/tensile force remains in the member, mostly due to the self-weight. This value will always be
negligible compared to the other force components in the member.

Example: Tension_Only.esa

A 2" Order calculation is executed using Newton Raphson , including global imperfections.
The diagonals are designated as ‘Tension-only ' members.

The normal forces for a linear analysis show that extreme compression results are obtained in the
diagonals. This will inevitably lead to failure due to buckling.
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53,

S

The normal forces for the non-linear analysis shows that diagonals are now only subjected to tension
thus buckling will not occur anymore. Only very small compression forces will appear in the diagonals.

Notes:

- Itis important to keep in mind thakénsion only’ does not change anything for shear forces and emim
The only component which cannot occur is compraséiot the member can still be subjected to bending

torsion,...

To specify that a member can only be subjectedimal forces, th&EM type of the member can be set to

axial forceonly.
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Properties

o x

IMemberU) ﬂ VR
Mame Bd44
Twpe column (1000 =
Library Mo =]
CrossSection CS3-HEABDD Rl
Alpha [deq) 0.00
tember system-line at centre j
ey [mm) 0
ez [mm] 0
LCS standard [
LCS Rotation [deq) 90.00 ]
FER type | standard [
Buckling and relative leng... ' standard
Lawer axial TDf"EE"'. onl T
Geometry &
Structural model
Nodes
Data

When using this, the user must be absolutely siatebending effects cannot occur in reality!

-The Calculation protocol for the Nonlinear calctitm shows extra information concerning the applied

nonlinearities, number of iterations per combinatio.

Calculation protocol

Calculation protocol

Nonlinear calculation

Method (Il. order)

Number of 2D elements 0
Number of 1D elements 2504
Number of mesh nodes 2253
Number of eguations 13518
Maximum iterations 50
Number of increments 5
Type of nonlinearity Il. order

local nonlinearities
Newton-Raphson

No._of combination Start End No__of iterations
NC 1 16.06.2011 1539 16.06.2011 1540 3
NC 2 16.06.2011 1540 16.06.2011 1540 3
NC 3 16.06.2011 15:40 16.06.2011 1540 3
NC 4 16.06.2011 1540 16.06.2011 1540 3

Example: Mechanism.esa

When using Beam Nonlinearities, it is important to make sure that not too many elements are
eliminated.

A common error is the creation of a mechanism due to the fact too many elements have been
designated tension only/pressure only and thus no solution can be found. This principle is illustrated in
the following project.

A steel frame has been modelled with hinged connections between the elements. The diagonals have
been specified as Tension only .
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Due to for example a roof load, both diagonals are subjected to compression. This is not possible for
Tension only members so both members are eliminated causing a global instability of the frame.

5.1.2 Members with Limit Force

A member with limit force acts in the structure until a specified limit is reached after which the member
will be eliminated from the calculation or yields plastically.

Properties X
Beam nonlinearity (1) j W N
[ 51
Type Limit farce Jhd
Direction Limit compresion hd
Type Buckling | results zero ) Jhd
Marginal force k] -30.00
Member

The Direction is used to specify in which zone the limit acts: the tension zone or the compression
zone.

When the limit is reached, it can be specified in the Type field how the member should act. The
member can be eliminated from the structure (Buckling ) or the member can stay in the structure but
with the limit force as maximal axial force (Plastic yielding ).

The limit itself is defined in the field Marginal Force . A negative value must be specified for a
compression limit and a positive value for a tension limit.
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Example: Limit_Force.esa
In this project, a frame is modelled in which one diagonal has a compression limit  of -30 kN.

For the left frame, the type is set to Buckling , for the right frame the type is set to Plastic yielding .

A linear analysis shows the following normal forces in the diagonals of both frames:

f‘p@q %?3'0)
/<0 /03
S B>
D N o
Gy Y
L=

A non-linear analysis , taking into account the limit force gives the following results for the normal
forces:

N
s
i
7,
% o
3? gon
b X

In the left frame, the diagonal has buckled so the tensile force in the remaining diagonal is augmented.
In the right frame, the diagonal stays in the structure but yields plastically and thus acts at the limit
force of -30 kN.

The deformed structure for the non-linear analysis shows the following:
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X

Due to the fact one diagonal has buckled in the left frame, larger horizontal deformations occur.

5.1.3 Members with gaps

There are various connection and support conditions used in a real structure. It may happen that a
beam is not attached rigidly to the structure but "starts its action" only after some initial change of its
length. The beam thus has to have a certain translation in its local x-direction before it becomes active.
This behaviour can be inputted using ‘gap’ elements.

_1 Beam nonlinearity
Name BN1
Type | Gap j
Type Press only |
Displacement [mm] 100
Position Begin j

The Type field is used to specify if the member is active only in compression, only in tension or in both
directions.

The value of the translation can be inputted in the Displacement field. The gap can be defined at the
beginning or at the end of the beam using the Position field.

Gap members in tension only can for example be used to model a rope: the rope can only work in

tension but becomes active only after a certain translation. Gap members in both directions are
frequently used in scaffolding structures.

5.2. Beam Local Nonlinearity including Initial Stre  ss

To input local nonlinearities for 1D members, including initial Stresses, following functionalities must be
activated:

- Nonlinearity
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- Nonlinearity > Beam local nonlinearity

- Nonlinearity > 2 " Order — Geometrical nonlinearity  and

- Initial Stress

Project data

Basic data’ FundionalilyngadS'] Combinations Protedion!

Drynamics [} E| Monlin ty |
Initial stress |= Initial defarmations and curvature o
Subsoil o 2nd order - geomettical nanlinearity =
Manlinearity = Beam local nonlinearity a8
Stability o Suppart nonlinearity/Soil spring ]
Cliratic loads o Friction suppor/Sail spring o
Prestressing o B Steel |
Pipelines o Flastic hinges o
Structural model o Fire resistance m]
Farameters o Connection modeller o
tohile loads o Frame rigid connections ]
Creerview drawings = Frame pinned connections o
LTA-load cases (] Grid pinned connections ]
Bolted diaganal connections o
Exper system m]
Connection monodrawings o
Scaffolding m]
LTE 2nd Order o
Arcelar m]
oK I Cancel

The non-linearity can then be inputted in the =1 Structure menu through <= Beam - nonlinearity

— Beam nonlinearity

w

Name

BM1

Type

Press only

[

Press onfy
Tension only
Limit force
Gap

Initial stress
Cable

o]

Cancel

Two extra types are now available:

Members with Initial Stress

Cable Elements

43



Non linear and Stability

5.2.1 Members with Initial Stress

Tensile forces in elements augment the stiffness of the structure. Compression forces reduce the
stiffness.

Initial Stress is regarded as follows:
- The element in question is taken from the structure.
- The initial Stress is put on the element through the defined axial force.
- The element is put back into the structure.

It is clear that, when the element is inserted into the structure, the initial stress will partly be given to
other members thus the inputted force will not stay entirely in the member in question.

Notes:

- A positive axial force signifies a tensile foreenegative axial force signifies a compressiomcdor
- Initial Stress is mostly used in conjunction vatB™ Order analysis.

- Initial Stress is the only local non-linearitykian into account in a Linear Stability Calculatiorhis type of
calculation will be regarded i€hapter 6.

To take the inputted Initial Stresses into account for the calculation, the options Initial Stress and
Initial Stress as input must be activated through Calculation, Mesh > Solver Setup.

[Isolver setup

B Solver
Advanced solver options m]
Proper FEM analysis of cross-section parameaters (b, Ay, Az ) [m}
Meglect shear force deformation [ Ay, Az > A) m]
Type of solver Direct d|
Mumber of sections on sverage member 10
Maximal acceptable translation [mrm] 10000
Maximal acceptable rotation [mrad] 100.0
B MNonlinearity
Maximum iterations 50
Geometrical nonlinearty - Il. order Timoshanko LJ
Mumber of increments i
Caoefficient far reinforcement 1
B Initial stress |
|F|t|al stress ]
Initial stress as input ]

d| #|a [ | coce

Example: Initial_Stress.esa

In this project, a simple frame is modelled. The diagonal has a RD30 section and is given an Initial
Stress by means of a tensile force of 500 kN.
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In the left frame, the Initial Stress will immediately be distributed to the column. In the right frame, the
extra support will prohibit this.

A non-linear analysis , taking into account the initial stress gives the following results for the normal
forces:

&
&
S

0,30/

—-0.30

As specified, in the left frame, the initial stress is immediately distributed to the rest of the structure so
the tensile force of 500 kN is not found entirely in the diagonal. In the right frame, the force cannot be
distributed due to the support so the 500 kN stays in the diagonal.

This principle is even clearer when looking at the deformed mesh for the non-linear analysis :

In theory, when using correctly defined values of the cross-section properties (surface A, moment of
inertia I, modulus of Young E), a Beam non-linearity with Initial Stress can also be used to model
straight cables with large pre-stress forces. Both Timoshenko and Newton-Raphson methods can be

applied in this case.
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In general however, for cables the use of the specific Cable element is advised in conjunction with the
Newton-Raphson method.

5.2.2 Cable Elements — Not available in the Profess ional edition

This options needs module esas.12 and this module is included in the expert edition.

A Cable element is an element without bending stiffness (ly and Iz 0J0). During the solving of the
equations this is taken into account so no bending moment will occur in the element. The
displacements (in the intermediate nodes) have thus been calculated without bending stiffness.

A Cable element allows a precise analysis of cables. For slack cables, Scia Engineer allows the
definition of the initial curved shape of the cable.

A cable can be defined in three ways:
1) A Straight cable.

2) A Slack cable with an initial shape caused by the Self-weight .
3) A Slack cable with an initial shape caused by a distributed load Pn.

A straight cable is defined by choosing the option Straight at “Initial mesh”

(] Beam nonlinearity @
M 1 ‘ Mamea 33
Type Cahle ;]
/| U nitial mesh | Straight -l
Maormal force [kMN] 10,00

M

/ u

g0y,

%

e

(618 Cancel .

When choosing Calculated for Initial mesh, the cable acts as slack.

46



[ Beam nonlinearity

I+ N‘ Mame
Type

53
Cable

Initial mesh

J Calculated

MHormal force [kiMN]
I Selfweight

Pn [kMN/m]
Alphax [deg]

e iR
5

o

10,00
)
0.00
0.00

el

Ok Cancel |

The initial shape will be in equilibrium in relation to the specified load on the cable: either the self-

weight or a distributed load Pn.

When activating the option Self weight the specified load will be the self weight of the cable.

When choosing for a distributed load Pn, it can be specified that the load is not vertical but is rotated.

This can be inputted through the angle Alpha x , the rotation angle around the local x-axis. For a

default slack cable this parameter will be zero.

When using a calculated initial mesh, the program generates a curves mesh, defining an arc of circle
based on the two ends of the member and the sag in the middle of the member.

The sag is calculated as follows:

offset of cable at mid-span
span length

_Q SN =
{1 I | BT

of the member.
q can be equal to B, or SW or B,

tension in the cable (positive value)

+SwW

line load on the cable (positive = downwards ) applied perpendicularly to the axis

The user can thus define a specific initial shape by specifying the value for the sag f. Using the above
formula, this leaves two unknowns: Pn and N. By choosing the value for one, the other is defined and

the initial shape is known.
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Non linear and Stability

the distributed load q is always perpendicularly to the member axis. The reason for that is, that
only the component of the load that is acting perpendicularly to the beam is affecting the
calculation of the sag. However, this implies that the value of sag will be overestimated when the
member is not horizontal.

Workaround: disable the self weight and input it as B, instead, with B, = SW - cos@ where 6 is the
angle between the member axis and the horizontal plane.

There is a limit value for the sag value. The program will not apply a sag value larger then L/4. If
the result of the formula above is higher, f = L/4 will be used.

The input of the cable element only defines the initial shape. Afterwards the cable can be
loaded by real loads.

The calculations are executed on the deformed shape. This indicates that the eventual
deformation of a cable is calculated from the slack shape and not from the initial straight
shape.

The deformed mesh can be used to show the true deformation of the cable.

For a precise analysis, the finite element mesh on a cable element needs to be refined. To
avoid unnecessary refinements for all members of the structure, the mesh of cable
elements can be refined separately through Setup > Mesh > Average size of cables,
tendons, elements on subsoil.

[J Mesh setup

B Mesh |
Minimal distance between two points [m] (1e-005
Awerage number of tiles of 10 element ]
Average size of 20 elementicuryed element [m] 1.000

B 1D elements
Minimal length of beam element [m] 0100
taximal length of beam elemeant [m] 100,000
Awerage size of cables, tendons, elements on subsoil, nonlinear soil spring [m] 1.000
Generation of nodes in connections of bearn elements O
Generation of nodes under concentrated loads an beam elements O I
LT =1i1=1 = ) =T =14 =1 =11 =1i =m0 =1 T ==l GVl =BT =
Ma. of FE per haunch 5
Apply the nodal refinement _NU members j
Hanging nodes for prestressing O

@ i‘ 5‘ Ok | Cancel

Example: Cable_Equilibrium.esa

In this project, a cable analysis is performed once with a pre-stress force and once without. The cable
has following properties:

Length of the cable: 20m

Section of the cable: 0.001 m2
E-module of the material: 2.1 10" N/mz
Loading g on the cable: 1 kKN/m

Result of Scia Engineer for initial pre-stress N ;;=1000 kN
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Whax = 49.8 mm

N = 1003.51 kN
Check:
- Moment i;] the middle of the cable:
q'8L — N Wy = 50 — 49.97 ~ 0

- Normal force in the cable:

For the calculation of the strain, the shape of the displacement is taken as parabolic. This gives the
following formula:

N 16
s = /bz — = h?
3
The strain € in the cable can then be written as:
s b
16 - Wiy s
1 +T— 1 - 1653346 - 10_
N;=¢-A-E =3472kN
¢h’l N = Njnit + Ng = 1000 kN + 3.472 kN = 1003.47 kN = 1003.55 kN

Result of Scia Engineer for initial pre-stress N = 0 kN

Whax = 329.7 mm
N =151.93 kN

Check:
- Moment in the middle of the cable:

.LZ
"8 — N * Wygy = 50 — 50.09 = 0

- Normal force in the cable:

.h? a2
€=,/1+136_S'§ ~1= [14+1%0me g = 72441810

Ny=¢e-A-E=15213 kN

N = Ng =152.13 = 152.01 kN

The deformation of both cables is shown in the following figure:
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- 329.8
The following results are obtained for the normal forces in the cables:

1003.55

Example: Cable_Polygonal.esa

In this benchmark project a polygonal cable is loaded by a Point Load. The value of the Point Load is
altered between 3 kN, 5 kN, 10 kN, 15 kN and 20 kN.

For each case, the maximal deformation and the normal force are compared with benchmark results
from Petersen, ref [9].

The following graphs give an overview of the obtained results out of Scia Engineer:
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50.00

45.00 /»—4&0?
40.00

35.00 /046:3—
30.00

25.00 A BT

20.00 7

15.00

#1229

10.00
78
5.00
NC1 NC2 NC3 NC4 NC5
uz [mm)]
0.00
-20.00 NC1 NC2 NC3 NC4 NC5

-40.00 39.22
-60.00 \
80.00 \—74.76
-100.00 \
\0\107.44
-120.00

-140.00 \0 -137.81

The following table gives an overview of the obtained results in comparison with Peterson:

F 3.0kN 5.0 kN 10.0 kN 15.0 kN 20.0 kN
N Petersen [kN] 7.48 12.29 23.80 34.69 45.08
N Scia Engineer [KN] 7.48 12.29 23.79 34.68 45.07
Af Petersen [m] 0.0233 0.0392 0.0744 0.1072 0.1375
Af Scia Engineer [m] 0.0240 0.0392 0.0747 0.1074 0.1378

Example: Cable_Distributed.esa

In this benchmark project a pre-stressed cable is loaded by a Distributed Load. The value of the
distributed load is altered between 1.7 N/m and 6.33 N/m.

For both cases, the maximal deformation and the normal force are compared with benchmark results
from Petersen, ref [9].

The pre-stress force in the cable is 3,8 kN.

=t}

W N T R . Y S S T R

[ i I

The following table gives an overview of the obtained results:

q 1.7 N/m 6.33 N/m
N Petersen [KN] 3.83 4.23
N Scia Engineer [KN] 3.84 4.24
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Af Petersen [m] 0.15000 0.50615
Af Scia Engineer [m] 0.14969 0.50482

Example: Cable_InitalShape.esa

To illustrate the calculation of the initial shape, a simple cable element is modelled with following

properties:
Length of the cable: 20m
Section of the cable: 0.001 m2
E-module of the material: 2.1 x 10 N/mz2

. 2k i e
= 7

The initial shape will be calculated with following properties:

Normal force: 200 kN
Distributed load: 10 kN/m
!Beam nonlinearity (1) ﬂ B A
Fame [s2
Type Cable =
Initial mesh :Calculated o
MNormal force k] (200,00
Seli weight =
P [l/m] (10,00
Alphax [deg] oo
kember

Afterwards the cable is loaded by a line force of 1kN/m.
Scia Engineer gives the following results for the displacement in the z-direction:

28.9 28.9
\ |

\ i \

Those are the displacements of the distributed load of 1kN/m.

This initial shape can also be calculated with following formula:
q-L°
=3 7

_q-L* 10kN-(20m)?
~ 8-H  8-200kN

H

f = 2.5m = 2500mm

The total deformation in the middle of the cable is than:
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Total deformation = -2500mm + 8.0 mm = -1492 mm:

Properties o X
Deformations on member (1) RARY: T
Name Deformations on member
Selection All -
= e —

Type of loads Monlinear combinations | | /I\ |
Nonlinear combinations NC1 d ‘ WM
Fiter o e —2492.0

|Global deformation |~
Values uz -
System Principal Jd
Extreme Local hd
Crawing setup 1D |
Section All hd

Example: Guyed_Mast.esa

To illustrate the application of cables, a guyed mast is modelled. The mast is supported by several
cables which have a pre-stress force of 5 kN and an initial shape due to the self-weight .

The deformed mesh for Non-Linear combination NC9 for example shows the following:
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Detailed calculation information can be found in the Calculation Protocol
Calculation protocol

Calculation protocol

Calculation protocol.

Linear calculation

Number of 2D elements 0
Number of 1D elements 1217
Mumber of mesh nodes 1032
Number of equations 5192
Loadcases LC1
LC2
LC3
LC4
LC5
Start of calculation 20.06.2011 14:55
End of calculation 20.06.2011 14:55

Sum of loads and reactions.

[KN] X Y Z

Loadcase LCA loads 0.0 0.0 1.7
reactions in nodes 0.0 0.0 1.7

reacions on lines 00 00 00

contact 1D 0.0 0.0 0.0

contact 2D 0.0 0.0 0.0

Loadcase LC2 loads 0.0 4.6 0.0
reacions in nodes 0.0 46 0.0

reacions on lines 00 00 00

contact 1D 00 0.0 0.0

contact 2D 0.0 0.0 0.0

Loadcase LC3 loads 0.0 0.0 6.0
reacions in nodes 0.0 0.0 6.0

reactions on lines 0.0 0.0 0.0

contact 10 00 00 0o

contact 2D 00 0.0 00

Loadcase LC4 loads 0.0 0.0 0.0
reactions in nodes 0.0 0.0 00

reacions on lines 0.0 0.0 0.0

contact 1D 0.0 0.0 0.0

contact 20 00 00 0o

Loadcase LC5 loads 0.0 0.0 0.0
reacions in nodes 0.0 0.0 0.0

reactions on lines 0.0 0.0 0.0

contact 1D 0.0 0.0 0.0

contact 20 00 00 00
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5.3. Non-Linear Member Connections

When inputting hinges on beam elements, it is possible to input a non-linear function for each degree
of freedom (ux, uy, uz, fix, fiy, fiz). The function can signify the relation between moment and rotation
or force and displacement.

] Hinge on beam
Name H205
Paosition End hd
Lo Rigid hd
uy Rigid hd
uz Rigid hd
fixe Rigid hd
fiy Monlinear |
Stiff - fiy [MNm./rad] 1.6171e-001
Fun - fiy Function 2. -|...
fiz Free j

[

When using non-linear functions, it is very important to input a relevant linear stiffness. This value is
used during the first iteration of the non-linear calculation (and during a linear calculation).

The non-linear functions can be defined through B Ubrary 5 @ Stucture, Analysis >
A Monlinear functions

Nonlinear function [E

0147

fi [rad]

0145

Mareg l'ﬁg;él'ﬁj—il
“Wariable on X-axis of graph
fi [rad] | M [kNm] |
1 [-0ma7 068
2 [-0.0046 043
T -0.0020 .-D.ZS Fositive axis
| 4 |-0.0009 l013 S
— 1 Free =
5 |0.0000 0.00 I
6 |0.0009 lo13
7 |ooozo lo2s MNegative axds
| & |00046 043 Frea v
9 (00148 068
* |0.0000 0.00
=
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For member connections, the non-linear functions can be defined for translation or rotation. When
defining a function, it is very important to check the signs of the function values. The defining
magnitudes for non-linear rotation functions are the internal forces, for non-linear translation functions
the displacements.

This implies that these functions are inputted in the first and third quadrant.

For the end of the function, it is possible to select one of three options:

- Free: When the maximal force is reached, it stays at that value and the deformation will rise
uncontrolled.

- Fixed: When the maximal deformation is reached, it stays at that value and the force component
will rise.

- Flexible: The relation between force component and deformation is linear.

Scia Engineer also allows creating a new function from the already defined functions to provide an
easy input of complex functions.

Example: Connection.esa

In this example, an industrial hall is calculated using algorithms to calculate the moment-rotation
diagram for bolted and welded beam-to-column connections. Scia Engineer allows the calculation of
these diagrams and the automatic application of the diagram as a non-linear spring function for
member connections. For the theoretical background, reference is made to the “Advanced Training
Steel” and ref. [14].

The geometry of the structure is shown in the following figure:

The structure is calculated in 2™ Order using Timoshenko’'s Method. The diagonals have been set as
Tension-only .

In node N2 a bolted beam-to-column connection is modelled:
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The Moment-Rotation diagram is calculated by Scia Engineer using the algorithm of the EN 1993-1-8.

kNm
250.0000
200.0000
150.0000
100.0000
50.0000 /
0.0000
= = = = = = = = = mrad
S = = ¥ % S = = %

Together with the calculated diagram, automatically a non-linear function is created:
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M Nonlinear functions
Aiem il 9 | & & HE| Rotaton *

Node : N2-[B3 [

Node N2 | M [kNm]
Type Rotation
Paositive end | Free ﬂ

Megative end | Free = 135 50
8 Impulse
1[mradkN... |
2 [mradkN... |
3[mradkN... |
4 [mrad.kN...
5 [mrad.kN... 5
& [mrad kN... 0772 2 4 =
7[mradkN... | 25°

T

75707
120
i
E

ol
=
v

-135.59

—/_-263.59

[ Create new function ][ New “ Insert ][ Edit ] Delete

The function characterizes both tension-on-top and tension-at-bottom.

This function can then be assigned to the hinge defined in node N2:

Properties o X
‘Hinge on beam (1) v| \T:IY:
FLt
T Ha7
Position Begin hd
X Rigid hd
uy Rigid hd
uz Rigid d
fix Rigid hd
fiy MNonlinear Jha
Stiff - fiy [kNm/mrad)] 3.914%e+1
Fun - fiy MNode : N2-[B3] ﬂ_
fiz Rigid d
Member

5.4. Support Nonlinearity

Scia Engineer allows the following types of non-linear supports:

- Tension only / Pressure only supports

Nonlinear springs for supports
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- Friction supports

5.4.1. Tension only / Pressure only Supports

To input nonlinearities for supports, the functionality Nonlinearity > Support nonlinearity = must be
activated.

Project data le

Basic data | Functionality | Loads | Protection|

Dynamics o = |Nonlinearity |
Initial stress o Initial deformations and curvature o
Subsaoil 8 2nd order - geometrical nonlinearity o
MNonlinearity = Physical non-linearity for reinforced concr... O
Stability o Platefshell nonlinearity o
Climatic loads o Beam local nonlinearity o
Pipelines o Support nonlinearity/Soil spring =)
Structural model o Friction support/Soil spring o
Parameters o Membrane elements o
Maobile loads o Press only 2D members o
LTA-load cases o Sequential analysis o

External application checks o E | Subsoil |
KP1 application o Soil interaction o
Slabs with void formers [} Soil loads o
Pile Design [NEN method)] o
Pad foundation check o

E Concrete |
Fire resistance o
Hollow core slab [}

[ OK ] l Cancel ]

Supports with tension can be automatically eliminated. This is mostly used for slabs on subsoil, column
bases of for example scaffoldings, struts, ...

The following types of supports can be eliminated if tension occurs:
- Nodal Support
- Line Support
- Subsaoll

For Nodal Supports or Line Supports it is possible to specify a translation degree of freedom as ‘Rigid
pressure only’ or ‘Flexible Pressure only’

To eliminate supports in pressure (and obtain a Tension-only support), the nodal support can be
rotated 180°.

Subsoils are always regarded as Pressure-only for a non-linear calculation. No specific input has to
be made.
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In this example, a slab on subsoil is calculated. The slab is loaded by a Point Force in the middle.

The deformed mesh for the linear analysis shows the following:

Especially in the corners, tensile contact stresses are expected:

Example: Subsoil.esa

Non linear and Stability

A non-linear analysis , taking into account the pressure-only characteristic of the subsoil shows the

following deformation:
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As can be seen, the slab will rise at the corners so no more tensile contact stresses are obtained:

sigmaz [Pa]

11558.355

10000.000 I
S000.000

2000.000 +—
7000.000 +—
6000.000 1—
5000.000

4000.000 .
3000.000
2000.000

1000.000
0.000

The pressure stresses in the middle have increased which is expected when the slab can rise at the
corners.

Note:

- When using subsaoill, it is important to adequatefjne the mesh in order to produce precise rasult
- When calculating following the Winkler theorye thasternak values (C2) must be set to zero.

5.4.2 Nonlinear Springs for Supports

As seen for nonlinear member connections, it is also possible to use non-linear functions for supports.

For each degree of freedom (X, Y, Z, Rx, Ry, Rz) a nonlinear function can be inputted. The function
can signify the relation between moment and rotation or force and displacement.
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I Support in node
MName 515
Type Standard j
Angle [deg]
X Rigid d
Y Rigid -
RZ Z Rigid d
Fax Free d
Z Ry Nonlinear d
Stiffness Ry [MNm./rad] 1.7450e-001
X T Y Function Ry Function 1. ...
RX & \,&Y Rz Free d
k‘// @ Default size [m] 0,200
B Geometry
System GCS ﬂ
JZ
.i//
A I
ar. | Cancel |

When using non-linear functions, it is very important to input a relevant linear stiffness. This value is
used during the first iteration of the non-linear calculation (and during a linear calculation).

The definition of the nonlinear functions is exactly the same as seen with nonlinear member
connections.

In addition to nodal supports, a non-linear function can also be used for a subsoil under a plate.

Example: Support_Function.esa

In this example, the use of a non-linear function for a support is illustrated. A simple beam on two
supports is modelled.

The translation Z of both supports has been defined as a non-linear function:
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1328.0000 |

-100.0000

0.0000

u [mm]

100.0000

-628.0000

_1-1328.0000

The beam is loaded by a point force at one end. The value of the point force is taken as 1kN and
1.4kN.

A non-linear analysis shows the following deformation for the load of 1kN:

g

5

y

1

-53,1Tmm
This value can manually be approximated as follows:

_ —-100mm
*  —132¢N + 626N

(~100ON + 628N) = —53L4mm

For the load of 1.4 kN, the fixed end of the function is reached thus the maximal deformation of 2100mm
is obtained:

aa

FI /-1

7

—99.9mm

Example: Pallet_Racking.esa
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In this example, the calculation of a pallet racking system is shown according to ref. [10] Eurocode
ENV 1993-1-1 and ref. [11] FEM 10.0.02. This last reference gives field test methods which allow the
definition of moment-rotation diagrams for beam-to-column connections and column supports.

The beam-to-column connections and column supports can be defined by means of non-linear
functions.

g

The following non-linear spring is defined for the column supports:

B Nonlinear functions E|
b & |2 & | @ HE Rotation -

Function 1.
Function 2.

M [kNm]

[ ] Funciion 1.
Type | ~otatc
Positive end |Free
MNegative end Free

KHEN

Impulse
1 [rad kNm]
2 [rad kNm]
3 [rad.kNm]

-0.0096
0.0000

00

fi [rad] i

0.0096

-1.67

[ Create new function ][ Mew ][ Insert ][ Edit ] Delete . OK

™ Ea T y a y i

The beam-to-column connections are defined by the following non-linear characteristic:
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B Nonlinear functions
38 & |l 2 & | @ E | Rotation

Function 1.
Function 2.

Functon2
Type |Rotatic
Positive end |Free
MNegative end |Free

Impulse

1 [rad kNm]
2 [rad kNm]
3 [rad kNm]
4 [rad kNm)]
5 [rad.kNm]
& [rad kNm]
7 [rad kNm]
& [rad kNm]
9 [rad.kNm]
10 [rad,kNm]

Lelel

L0493

-0.0373

24

=000

-0,0144

M [KNm]

[ Create new function ][ New ” Insert ][ Edit ] Delete

0.0493
=h
m—

=

o
=
—

[

o]

Example: Culvert.esa

This project illustrates the use of non-linear functions to model for example the soil under a culvert.

The culvert has the following shape:

2

Non-linear supports have been defined with appropriate functions to model the behaviour of the soil:

;X Eijﬂiiﬁiiiiiiiiiﬂiﬁiﬁiﬁiﬁiﬁiiiiiiﬁiiiﬁf

65



Non linear and Stability

I Nonlinear functions
KLY 4 Colrat == = .
Function 3. ]|
Function 4.

Function 5.

Function 7.
Type ; 0.001 _

Postive .. Rigd < = u [m]
Negativ... | Rigid j =
B Impulse
1 [m,MN]
2 [m.MN]
3 MN]

20000
0000
s
—
=
[l

Create new function | MNew ‘ Insert ‘ Edit | | Close

A non-linear analysis gives the following deformation pattern for combination NC2:

N

Lo
—_—

5.4.3 Friction Supports
Friction supports can be used to model the fact that a reaction component is dependent on another
component. The horizontal component is for example dependent on the vertical component. When the
friction force is surpassed, the support slips through resulting in large deformations.

To input friction supports, both the functionalities Nonlinearity > Support nonlinearity/Soil spring
and Friction Support/Soil spring  must be activated.
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Project data
Basicdata  Functionality iLDadsi Combinations Prmemion] Mational Annexes
Cyrarmics |E| B Nonlinearity |
Initial stress a Initial deformations and curvature o
Subsail [} 2nd order - geometrical nonlinearity m}
MHonlinesarity = Beam local nonlinearity a
Stability = Support nonlinearity'Soil spring =
Climatic loads a Friction support/Sail spring |=
Prastrassing = Steel |
Fipelines o Flastichinges o
Structural model [m} Fire resistance O
Farameters a Connection modeller a
Mabile loads = Frame rigid connactians O
Owerview drawings [} Frarme pinned connections [m}
LTA - load cases ] Grid pinned connections ]
Bolted diagonal connections o
Expert system O
Connection monodrawings a
Scaffolding O
LTE 2nd Order m}
Arcelor O
Ok Cancel |

When entering a nodal support, the option Friction
freedom (X, Y, 2).

can be chosen for the translational degrees of

I support in node @

Mame =nl
Type Stanclard __v_J

Angle [deq]
x | Friction R
Rz From reaction P _vJ
f Clen < [kINfm] 800,00

& mju = 0.2
v Friction fd
Rx ‘>1(r’/ \*Y Ry From reaction z _'J

‘/ @N Clex 'y [kMNfm] 800,00

mju 0z

z Rigid R
z Independent frictian O
J Fx Frea =i
= y Py Free o
' Rz Free fud
Default size [m] 0.z200
oK | Cancel [
=l

The option From Reaction is used to specify which force component causes the friction force.

X, Y, Z: The final limit force can be calculated from the reaction in a specified direction. If a
support in the X-direction is being defined, it can be said that the friction force
should be determined from the reaction calculated in either the Y or Z direction. The
friction force is calculated from the following formula:

mjy, [R,
XY, XZ, YZ: The final limit force can be calculated as a compound friction. Only one of the stated

options is offered for each direction. E.g. if a support in the X-direction is being
defined, it can be said that the friction force should be determined from the reactions
calculated in the Y and Z direction. The friction force is calculated from the following
formula:
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Non linear and Stability

mjy, /RS + R

X+Y, X+Z, Y+Z: The same as above applies here. A different procedure is however used to
calculate the limit force. E.qg. for a friction support in the X-direction the following

formula is employed:

mju, [R, +mjy, [R,
In these formulas, mju specifies the coefficient of friction.

In the field C flex, the stiffness of the support can be inputted.

Note:

- Friction can be inputted in one or two directiofitsis not possible to define friction in all theelirections
since otherwise the "thrust" cannot be determined.

- When simple friction (X, Y, Z) is defined in tiections, the option Independent is availableis®pecifies
that the friction in one direction is independenttbe friction in the other direction.

- Composed friction (e.g. YZ or Y+Z) can be spedibnly in one direction.

Friction supports can be used for several types of structures. Nearly every support which isn't rigidly
connected to the surface on which it stands is subjected to friction. Examples include base jacks of
scaffolding structures, supports on an inclined surface, pipes in boreholes,...

Example: Scaffolding.esa

This project illustrates the use of friction supports for a scaffolding structure. The scaffold has the
following geometry:
4
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The base jacks are inputted as friction supports. Since a base jack, by default, is not connected to the
surface, the Z-direction is defined as rigid Pressure-only . Both horizontal degrees of freedom X and Y
are defined as Friction , dependent on the reaction Z.

— Support in node
MName Sn21
Type Standard ﬂ
Angle [deg]
X | Friction |
Rz From reaction Z ﬂ
C flex X kN./m] 1000.00
f mju X 0.2
7 Y Friction =l
From reaction Z ﬂ
R X Y R C flexe ¥ kM) 1000,00
X Y miu Y 02
k"// ®\* z Figid press only ﬂ
Independent friction O
R Free hd
z Ry Free Ihd
Rz Free Ihd
Default size [m] 0.200
X i B Geometry
System GCS j
Caticel

When large wind loads are taken into account, for example due to netting, large horizontal reaction

forces are expected in the base jacks. When these reactions surpass the friction force, the support
slips through.

After a non-linear analysis of the scaffold, the deformed mesh for combination NC5 shows the
following:

i'mk

-~
s

i

R —

In the middle base jacks, the friction force is clearly surpassed and thus the supports slip through. To
avoid this, the reaction in Z-direction must be augmented thus extra dead weight like ballast will be
required or the base jacks must be fixed to avoid slipping.

Note:
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Non linear and Stability

The functionality ‘Nonlinear Line Support’ definespecific type of soil spring developed for thef&s

project (Buried Pipe Design).

5.5 2D Elements

5.5.1 2D Membrane Elements — Not in Professional Ed ition

This option is implemented in module esas.37 and included in the Expert edition. So with the
Professional edition the option of Membrane elements as described in this chapter, will not be possible.

Membrane elements are defined as shell elements which have no flexural stiffness and no axial

compression stiffness.

Membrane elements can thus be used to model canvas, nets, etc. that are subjected to axial tension.

To obtain realistic results, a 2™ Order calculation needs to be executed using the Newton-Raphson

method.

To input 2D membrane elements, the functionalities Nonlinearity > 2 " Order — Geometrical

nonlinearity and Membrane Elements must be activated.

.'Projec'i data

Basic data Functionality 1Luad5] Combinations Prutediun1 National Annexes

Ciynamics ‘I:I Bl Nonlinearity
Initial stress [m} Initial deformations and cursature ]
Subsoil o 2nd order- geometrical nanlingarity B
MNanlinearity = Beam local nonlinearty ]
Stability o Support nonlineatity/Sail spring ]
Climatic loads o Friction suppori/Sail spring O
Prestressing a _Membrane elements. ilgl
Fipelines [m} B Steel
Structural model o Flastic hinges O
Farameters o Fire resistance [}
Mohile loads o Connection madeller [m}
Owenview drawings = Frame rigid connections o
LTA-load cases [} Frame pinned connections [}
Grid pinned connections m}
Balted diagonal cannactions [m}
Expert system O
Connection manadrawings ]
Scaffalding m|
LTB &nd Order m}
Arcelor ]
[8]9 | Cancel |

When defining the 2D element, the option Membrane must be chosen at FEM model..
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[} 2D member
Mame S1
Type plate (90) jaci
Library Mo il
’ haterial 5235 vi
4‘1‘: R+ n FEM maodel | Membrane =
= — T Thickness [rm] 200
| Member system-plane at centre _j
ez P o - Eccentricity z [mim] 0
i = // LCS Type Standard =
T e Swap orientation O no
LCS Angle [deg)] 0.00
Layer Laverl 'i
z
..’/.
X
K Cancel
Note:

- Membrane elements can only be modelled in a GéXefZ environment.

- Due to the fact the flexural rigidity is zero, ribs, orthotropic parameters or physical non-limetata can
be inputted on a membrane element.

- Since a membrane element has no axial compressfémess, no concrete calculation can be perfatme

this type of element.

Example: Membrane.esa

In this project, a textile canvas is modelled. At the four corners of the canvas, steel cables are
attached. Two cables are subjected to a tensile force of 50kN in horizontal direction.

Since the canvas has an initial position 0,5m lower than the endpoint of the cables, the canvas will first
be pulled straight.

Since both cable and membrane elements are used, a 2" Order non-linear analysis is executed

using the Newton-Raphson method.
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The deformed mesh for the non-linear analysis shows that the canvas has been pulled straight:

When the scale of the results is augmented, the typical deformation of the membrane element can

clearly be seen:

I >H

i

The tensile forces for the cable elements are shown on the following figure:

72



The principal membrane force n1 shows the tensile forces in the canvas:

In the same way, n2 can be shown:

The results show the 2" Order effect: due to the tensile forces in one direction, the canvas obtains a
stiffness which results in compression membrane forces.
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5.5.2. Pressure only

To input pressure only for 2D elements, the functionality Nonlinearity and Press only 2D members
must be activated.

Project data

Diynamics = B MNonlinearity |
Initial stress = Initial deformations and curvature O
Subsoil ] 2nd order - geometrical nonlinearity o i
= Physical non-linearity for reinforced coner... O
Stability a Plate/shell nonlinearity o
Climatic loads a Beam local nonlinearity =]
Prestressing a Support nonlinearity/Soil spring o
Pipelines = Friction support/Soil spring m| i
Structural model = Membrane elements O
Parameters g [Press only 2D members [
Mabile loads o Sequential analysis o
Automated GA drawings = B Concrete |
LTA-load cases = Fire resistance o
External application checks = Hollow core slab =] |
KP1 application o
Slabs with void formers =
Property modifiers m]
i
[ OK l [ Cancel ]

With this option, tension in 2D elements can be automatically eliminated. This is mostly used for
masonry elements. In below some examples are shown to clarify this option.

Example: PressureOnlyl.esa

This project illustrates the use of pressure only elements.
In this project two 2D-elements are modelled. The first one is modelled as an isotropic element with
no nonlinearity, the second one is a pressure only element:

EEEEEE TR

ke A S e Rl il ol s o o o o R i v ol 2R A et R s i w2 o R il e il B
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Properties o x Properties o x
2D member (1) v \E Y 2D member (1) v \a Y
MName 51 - MName 52 ~
Type plate (30) j Type plate (30) j
Analysis model Standard j Analysis model Standard j
Shape Shape
Material C30/37 R4 Material C30/37 =]
FEM model Isotropic | FEM model Isotropic |
- FEu nonineat model QY -l
Thickness type constant j Thickness type constant j
Thickness [mm] 200 Thickness [mm] 200
Member system-plane at | centre j Member system-plane at  centre j
Eccentricity z [mm] 0 Eccentricity z [mm)] 0
LCS Type Standard j LCS Type Standard j
Swap orientation O no Swap orientation O no
LCS Angle [deg] 0.00 - LCS Angle [deg] 0.00 -
Layer Layerl j_| Layer Layerl j_|

When calculating those elements, for every mesh element a certain orthotropy will be inserted. At the first
iteration step all the pressure only elements, will be calculated as an isotropic element. After the first
calculation, Scia Engineer will input another stiffness on all elements in tension. So a certain orthotropy will
be created. With this stiffness the tension capacity of this element will decrease. After adapting the
orthotropic parameters a new calculation will be performed. After this second iteration step again the
elements in tension will get another stiffness. This process will be repeated until equilibrium is reached.

The difference between the isotropic and orthotropic elements can be clearly view looking at the normal
force ny for these members:

ny [kN/m]
0.86

0.00
-50.00

PP T T Jarco

-200.00

—100C.00
—100.00

—100.00

-250.00
-300.00
-350.00
-400.00
-450.00

49441

In these results the real pressure of this element is visible for the right element. Looking at the trajectories of
this normal force, the trajectory of the pressure force will be even more visible:
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Non linear and Stability

n1 [kNim]
86.04

20.00

—100.00

§0.00 §
40.00

—10G.00
—100,00
—100.00

20.00

.00

-20.00 48
-40.00

-60.00 48
-20.00

o e

-85.93

=

Example: PressureOnly2.esa

When looking at the pressure diagonals in a reinforced 2D concrete element, ribs can be imported as
reinforcement.

In this example a plate with a bearing support is inserted with two ribs acting as the reinforcement of

the plate:
I H—p
de

. Il i E—— h's 8
7N o

Looking at the results of this 2D element, the pressure diagonals inside this element are clearly visible:
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Non linear and Stability

6. Stability Calculations

A stability calculation calculates the global buckling mode (eigenmode) of a structure under the given
loading. In addition, the ratio between the buckling load and the applied load is given.

Stability calculations are used to obtain an insight into the buckling mechanisms of a structure, to
calculate the buckling length of a member for use in the Steel Code Check, to verify if 2" Order
calculations are required,...

6.1 Stability Combinations

As seen for a non-linear analysis, the principle of superposition is also not valid for a Stability
calculation. The combinations have to be assembled before starting the calculation. In SCIA.Engineer,
this is done by defining Stability Combinations

| 42 Load cases. Combinations
1B Load cases
I Load groups
B} Combinations

I_g Stability comb:natmns]

Hesult classes

A stability combination is defined as a list of load cases where each load case has a specified

coefficient.
([ stability combinations
E?ﬁlﬂ..ﬁlélﬁgllnput = %
51 | ome | 51
B Contents of combination |

LC1 - SelfWeight [1.00
LC2 - Roof Weight |1.00
LC3 - SnowWeight [1.00
Analysis after nonlinear O

’ e from linear combinations ][ s e ” Insn_en.” Edit H Delete ]

As specified for the non-linear combinations, it is possible to import the linear combinations as stability
combinations.

6.2 Linear Stability

During a linear stability calculation, the following assumptions are used:
- Physical Linearity.
- The elements are taken as ideally straight and have no imperfections.

- The loads are guided to the mesh nodes, it is thus mandatory to refine the finite element mesh in
order to obtain precise results.

- The loading is static.
- The critical load coefficient is, per mode, the same for the entire structure.

- Between the mesh nodes, the axial forces and moments are taken as constant.
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The equilibrium equation can be written as follows:
[K; —K;]-u=F
The symbol u depicts the displacements and F is the force matrix.
As specified in the theory of the Timoshenko method, the stiffness K is divided in the elastic stiffness
Ke and the geometrical stiffness K. The geometrical stiffness reflects the effect of axial forces in

beams and slabs.

The basic assumption is that the elements of the matrix K¢ are linear functions of the axial forces in the
members. This means that the matrix Kg corresponding to a AP multiple of axial forces in the structure
is the A" multiple of the original matrix K.

The aim of the buckling calculation is to find such a multiple A for which the structure loses stability.
Such a state happens when the following equation has a non-zero solution:

[KE—A'KG]'MZ 0
In other words, such a value for A should be found for which the determinant of the total stiffness matrix
is equal to zero:
Similar to the natural vibration analysis, the subspace iteration method is used to solve this eigenmode
problem. As for a dynamic analysis, the result is a series of critical load coefficients A with

corresponding eigenmodes.

To perform a Stability calculation, the functionality Stability must be activated.

Project data

Basicdata Functionality 1L|:|ad5] Combinations | Frotection

Crerview drawings

Arcelar

Crnamics (] 3 Steel
Initial stress = Fire resistance =]
Subsail o Connection modeller a
MNanlinearity a Frame rigid connections =]
Stability = Frame pinned connections a
Climatic loads = Grid pinned connections =]
Frestressing a Bolted diagonal connections ]
Fipelines a Expert system =]
Structural model (] Connection rmonodrawings a
Farameters = Secaffolding =]
hobile loads ] LTE 2nd Order a
o al
o

LTA-load cases

QK Cancel '

In the results menu, the A values can be found under the caption #|} Crlical load coefficients
The number of critical coefficients to be calculated per stability combination can be specified under
Setup > Solver.
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Note:

- The first eigenmode is usually the most important and corresponds to the lowest critical load
coefficient. A possible collapse of the structure usually happens for this first mode.

- The structure becomes unstable for the chosen combination when the loading reaches a value
equal to the current loading multiplied with the critical load factor.

- A critical load factor smaller than 1 signifies that the structure is unstable for the given loading.

- Since the calculation searches for eigen values which are close to zero, the calculated A values can
be both positive or negative.

A negative critical load factor signifies a tensile load. The loading must thus be inversed for buckling
to occur (which can for example be the case with wind loads).

- The eigenmodes (buckling shapes) are dimensionless. Only the relative values of the deformations
are of importance, the absolute values have no meaning.

- For shell elements the axial force is not considered in one direction only. The shell element can be
in compression in one direction and simultaneously in tension in the perpendicular direction.
Consequently, the element tends to buckle in one direction but is being ‘stiffened’ in the other
direction. This is the reason for significant post-critical bearing capacity of such structures.

- Initial Stress is the only local non-linearity taken into account in a Linear Stability Calculation.
- Itis important to keep in mind that a Stability Calculation only examines the theoretical buckling

behaviour of the structure. It is thus still required to perform a Steel Code Check to take into account
Lateral Torsional Buckling, Section Checks, Combined Axial Force and Bending,...

Example: Buckling_Frame.esa

A stability analysis is performed on a steel frame. The first three buckling modes are calculated and the
buckling loads are compared to the analytical results from ref.[26] to obtain a benchmark for the
stability calculation of Scia Engineer.

Y \ i3
N
%X A A

To obtain precise results, the number of 1D elements is refined through Setup > Mesh.
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B Mesh setup FXI

MName
E Mesh
o Lol o0
Average number of tiles of 1D element 20
] T.Uuy
Definition of mesh element size for panels Automatic j
Average size of panel element [m]
B 1D elements
Minimal length of beam element [m] 0.100
Maximal length of beam element [m] 1000.000
Average size of cables, tendons, elements on subsoil, nonlinear soil spring [m] 1.000
Generation of nodes in connections of beam elements =
Generation of nodes under concentrated loads on beam elements B
Generation of eccentric elements on members with variable height [}
Division on haunches and arbitrary members 5
Apply the nodal refinement Mo 10 members j
Hanging nodes for prestressing &
| &|d| ok |[ cancel |
o |

Under Setup > Solver the Number of critical values can be specified. In addition, the Shear Force
deformation is neglected to have a good comparison with the analytical results.

M Solver setup

B Solver
MNeglect shear force deformation ( Ay, Az == A)

ype of solver j
MNumber of sections on average member 10
Maximal acceptable translation [mm] 1000.0
Maximal acceptable rotation [mrad] 1000

i 1

B Stability
MNumber of critical values 3

| @] | ok ][ cancel |

|

After executing a Stability calculation, the following critical load coefficients are obtained:

Critical load coefficients

Critical load coefficients

N f
- I
Stability combination : 81
1 221
2 289
3 353

The corresponding buckling modes can be shown under Displacement of nodes by viewing the
Deformed mesh for the Stability Combination



Non linear and Stability

Buckling mode 1 — Critical load factor A = 2,21

2 ) ,//
h_/ R

Buckling mode 2 — Critical load factor A = 2,89

‘ B ‘ A
- —~Y

A

— R

~
-~

/N VAN VAN

The loading F on each column is 100 kN so the critical buckling load N, can be calculated as:
N, =A-F

This gives the following results which can be compared to the analytical calculation:

N, for Scia Engineer Ref.[26]

Buckling Mode 1 221 kN 221.5 kN
Buckling Mode 2 289 kN 289.6 kN
Buckling Mode 3 353 kN 353.8 kN
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Example: Buckling_Arch.esa

When calculating for example an arched steel bridge, one of the required parameters for a Steel Code
Check is the buckling length of the arch. Using a stability calculation, the buckling factor of any member
can be obtained.

As an example, a steel parabolic arch is modelled with two fixed end points. The arch has a horizontal
length of 10m, height 2m and is loaded by a vertical line load of 30 kN/m.

—3000
—3000

The Shear Force deformation is neglected to have a good comparison with analytical results. Using
an Average Mesh size for curved elements  of 0,1m, a Stability Calculation yields a critical load
factor of 0,46.

B Mesh setup EI

Name

B Mesh
Minimal distance between two points [m] 0.001

W’ aidlelement 1
Average size of 2D element/curved element [m] 0.100 I
efinilon of mesh element size for panels Automatic j

Average size of panel element [m]
B 1D elements

Minimal length of beam element [m] 0.100

Maximal length of beam element [m] 1000.000

Average size of cables, tendons, elements on subsoil, nonlinear soil spring [m] 1.000

Generation of nodes in connections of beam elements &

Generation of nodes under concentrated loads on beam elements e

Generation of eccentric elements on members with variable height [}

Division on haunches and arbitrary members 5

Apply the nodal refinement No 1D members j
Hanging nodes for prestressing B

EIal ok || Cancel |l_|

Critical load coefficients

Critical load coefficients
N f
- 1
Stability combination : 81
1 0.46
2 077
3 1.30
4 1.82

The first buckling mode has the following shape:
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X

This result can be checked using an analytical formula from Ref.[28]. The critical lineload for a fixed-
fixed arch with height 20% of the support distance is given as:

P = 103,27

With: E = Modulus of Young = 210000 N/mmz2
| = Moment of inertia = 666666,67 mm*
L = Distance between supports = 10000 mm

o Py = 14,448 kKN/m

The loading P on the structure was 30 kN/m so the critical load coefficient can be calculated as:

§ = Per _ 14448 kN/m _ 0,48

P 30 kN/m
This result corresponds to the result of Scia Engineer.

Using the critical load coefficient, the buckling load of the arch can be calculated. The minimal normal
force N under the given loading is 195,82 kN. The minimal is used since this will give a conservative
result for the buckling length.

—195.82 kN

The buckling load N, can then be calculated as:
N, =A-N=046-195,82 =90,0772 kN

Applying Euler’s formula, the buckling factor k can be calculated:

mE'l

N, =——

cr (k'S)Z
1 w*E-I

5 k==
S Ner

In which s specifies the arch length of 10,982m
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The parameters can now be inputted:

k =

1 |[m*-E-1 _ 1 m? - 210000N /mm? - 666666,67mm* 0 36
s N,  10982mm 90077,2N -

This buckling factor can now be inputted in the buckling data of the arch so it can be used for a Steel
Code Check.

This example illustrates the use of a stability calculation for a simple arch. The same procedure can
now be applied to more complex structures like arched bridges, truss beams, concrete buildings,...

Example: Buckling_Arch_FEM.esa

To illustrate the use of stability in finite element calculations, the arched bridge of the previous example
is modelled as a shell element.

Using an Average Mesh size of 2D element of 0,1m, a Stability Calculation yields the following
critical load factor:

Critical load coefficients

Critical load coefficients

N f
= 1
Stability combination : 81
1 047
2 0.79
2 1.37
4 1.92

The corresponding buckling mode can be shown by viewing the Deformed Mesh under 2D Members
> Deformations of Nodes
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The result corresponds to the analytical solution shown in the previous example.

Example: Buckling_Arbitrary_Profile.esa

In this example, the buckling load for a composed column is calculated. The column has a variable
section consisting of two different cross-sections.
The critical buckling load is compared with the analytical result from Ref.[6].

=

/N
The loading is taken as 1 kN so the critical load coefficient equals the critical buckling load. To obtain a
correct comparison with the analytical calculation, the shear force deformation is neglected:
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M Solver setup @

Name

B Solver
Neglect shear force deformation [ Ay, Az »> A) ]
Type of solver Direct j
Number of sections on average member 10
Maximal acceptable translation [mm) 1000.0
Maximal acceptable rotation [mrad] 100.0
Coefficient for reinforcement 1
B Stability
MNumber of critical values 4

& | & | 9| | o< [ cancel |

=

The formula for the buckling load of a member with arbitrary cross-section is given in Ref.[6], pp.114 by
formula (2-48):

m'E'Iz
cr=l—2

With m a parameter depending on the length of the different sections and the ratio I,/l,. This
parameter is specified in table 2-10 of Ref.[6].

Iy 8.356 10’ mm”*
I 4.190 10° mm”
a 4m

| 10 m

all 0.4

/1, 0.2

m 4,22

P, 3713 kN

A Stability Calculation gives the following result:

Critical load coefficients

Critical load coefficients

N f

- Il
Stability combination : 31
1 369637
2 869271
3 2919312
4 42936 49

This result corresponds to the analytical solution.
The corresponding buckling mode has the following shape:
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Note:

The buckling shapes can be animated through View > New Animation Window

Example: Stability EC3.esa

As seen during the 2" Order calculations, according to EC3 Ref.[27], a 1% Order analysis may be used
for a structure, if the increase of the relevant internal forces or moments or any other change of
structural behaviour caused by deformations can be neglected. This condition may be assumed to be
fulfilled, if the following criterion is satisfied:

F
a, =—= 210 for elastic analysis.

Ed
With: Qg The factor by which the design loading has to be increased
to cause elastic instability in a global mode.
Feq The design loading on the structure.
Fer The elastic critical buckling load for global instability,

based on initial elastic stiffnesses

The factor a, thus corresponds to the critical load coefficient calculated through a Stability calculation.
The frame was regarded in a previous example and had the following geometry:

I
EX A A

A Stability Calculation gives the following critical load coefficients for the design loading:
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Critical load coefficients

Critical load coefficients

N f
- Il
Stability combination : $1
1 -05.14
2 -31.01
Stability combination : 82
1 13.17
2 A7
Stability combination : 83
1 15.16
2 8782
Stability combination : 84
1 13.20
2 7911
Stability combination : 85
1 13.34
2 65.10

The lowest positive factor of 13,17 has the following buckling shape:

X

Since this lowest factor is higher than 10, this implies that a 1 Order calculation may be executed;

the structure is thus not sensitive for 2™ Order effects.

Example: Stability Imperfection.esa

In Chapter 6, the use of the buckling shape as imperfection according to EC3 was discussed. In this

example, the procedure is illustrated for a column.

The column has a cross-section of type IPE 300, is fabricated from S235 and has the following relevant

properties:

o
i

v X

\

E = 210.000 N/mm?
L =5000 mm
l, = 83560000mm"*

Calculation of the buckling shape

f, = 235 N/mm?
A = 5380 mm?
W, = 628400 mm®

Yv1 = 1.00
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Non linear and Stability

First a Stability calculation is done using a load of 1kN. This way, the elastic critical buckling load N,
is obtained. In order to obtain precise results, the Number of 1D elements is set to 10. In addition, the
Shear Force Deformation is neglected so the result can be checked by a manual calculation.

The stability calculation gives the following result:

Critical load coefficients

Critical |oad coefficients
M f
I

Stability combination : 51
1 638528

This can be verified with Euler’s formula using the member length as the buckling length:

22 7-210.000—1 - 83560000mm*

z
N = _ mm = 6927,51 kN
e 12 (5000 mm)?

The following picture shows the mesh nodes of the column and the corresponding buckling shape:

‘ Displacement of nodes

Stability calculation, Extreme - No

| Selection - Al
10 Stability combinations © $1/1 - 688528
Node of mesh Case Ux Uz Fiy

9 [mm] [mm] [mrad]
3 1 S11 - 688528 0,0 0,0 2315
11 S11 - 6868528 1138 0,0 2201
/ 3 511 - 688528 2165 0,0 1873
6 4 S11 - 688528 2980 0,0 1360
5 3 S11 - 6868528 3504 0,0 71,5
3] S11 - 688528 3664 0,0 0,0
4 7 S11 - 6868528 3504 0,0 -715
3 8 S11 - 688528 2980 00| -1360
' 9 S11 - 688528 2165 00| -1873
10 S11 - 6868528 1138 00| -2201
X 2 S11 - 688528 0,0 00| -2315

Using for example an Excel worksheet, the buckling shape can be approximated by a 4" grade
polynomial.
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Buckling Shape

400

350

. / N
7/ N
J N

/ y=2,114E-12x%- 2 114E-08x% + 7,132E-06% + 2,285E-01x \

: N\

-

[=]

Deformation

=
Ln
(=]

fury
=
[=]

Ln
(=]

a 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Length [mm]

A polynomial has the advantage that the second derivative can easily be calculated.

S ny=2114 10712 x* —2,114- 1078 - x3 + 7,132 1076 - x2 + 2,285 - 1071 - x
© 7l =8456 10712 x3 — 63421078 - x2 + 1,426 - 1075 - x + 2,285 - 10~
© 7l =2537 -1071 - x2 - 12681077 - x + 1,426 - 1075

Calculation of ey

- 5380mm? = 1264300 N

Np = fy A =235 —;

Mgy = - Wy, = 235 —— - 628400mm? = 147674000 Nmm (Class 2)

N
mm?

1264300 N

1= Ngx/Ny = |——— =10,43
ric/ Ner 6885280 N

a =0,21 for buckling curve a

1

Y [1+a(i-02)+ ()] + (05 [1 + a(i-02) + (")) - (A

= 0.945

X

These intermediate results can be verified through Scia Engineer when performing a Steel Code Check
on the column:
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Buckling parameters vy
Sway type non-sway
System Length L 2.000
Buckling factor k 1.00
Buckling length Lcr 5.000
Critical Euler load Ncr 6927.686
Slenderness 4012
Relative slenderness Lambda 043
Limit slenderness Lambda,0 020
Buckling curve a
Imperfection Alpha 021
Reduction factor Chi 0595
Buckling resistance Nb Rd 1195.37
Raos
3 Mpy 1 VYm1
€y = a(A—OZ) N—ka
Or with yy, = 1.00:
_ Mgy 147674000 Nmm
eo = a(1—0.2) N = 0.21(0.43 = 0.2) - 2613008 5.605 mm

The required parameters have now been calculated so in the final step the amplitude of the

imperfection can be determined.

Calculation of it

The mid section of the column is decisive = x = 2500 mm

1., at mid section = 368,4

Ny = 2,537 - 10711 - 25002 — 1,268 - 10~7 - 2500 + 1,426 - 10™5 = —1,443 - 10™* - 1/mm?

N, ~ceos 6885280 N
Mler = 2002 M 5 10000N /mm? - 83560000 mm* - 1,443 - 10~ - 1/mm

Ninit = €o E-1 >+ 368,4

y " Nermax

=5,615mm
This value can now be inputted as amplitude of the buckling shape for imperfection.
To illustrate this, the column is loaded by a compression load equal to its buckling resistance.

However, due to the imperfection, an additional moment will occur which will influence the section
check. The buckling resistance can be calculated as follows:
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A-f 235L
X Y — 0,945 - 5380 mm? - — M _ 1194 76 kN
Yo 1.00

Nb,Rd =

A non-linear combination is created in which the buckling shape as imperfection is specified.

(I Nonlinear combinations

LBk 0o & A b

- NCI | Name NCT
Description
Type Ultimate j

E| Contents of combination

LC2-Load 1194.76 kM 1.00
Bow impetfection Mane Ll
Global impetfection Buckling shape j
Stahility 51 =
Eigen shape 1
hex detorration [rom] |5.6

’ MNew from linear combinations ” RI=0 ][ Insert ” Edit “ Delete ]

Using this combination, a non-linear 2" Order calculation is executed using Timoshenko’s method

The additional moment can be easily calculated as follows:

1 1
Mninit = NEd *MNinie 1_—Nid =1194.76 kN -5.615 mm - m =8.12 KNm
N,, 688528 kN

When performing a Steel Code Check on the column for the non-linear combination, this can be
verified. The critical check is performed at 2,5m and has the following effects:

The critical check is on position 2.500 m

Internal forces
NEd 119476 kM
Vy Ed 0.00 kN
\Vz Ed 0.66 kN
TEd 0.00 kNm
My Ed 8.10 kMm
Mz Ed 0.00 kMNm

The additional moment thus corresponds to the moment calculated by Scia Engineer.

As seen in the diagram, Path 3 is followed: the buckling shape serves as a unique global and local

imperfection. This implies that only a section check and Lateral Torsional Buckling need to be checked.

Since LTB is negligible with this small bending moment, only a section check is required.

This example has illustrated the use of a buckling shape as imperfection. Depending on the geometry

of the structure, this imperfection can have a large influence on the results due to the additional
moments which occur.

When using this method, it is very important to double check all applied steps: small changes to the
loading or geometry require a re-calculation of the buckling shape and amplitude before a non-linear

analysis may be carried out.
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As a final note: the buckling shape only gives information about a specific zone of the structure. The
imperfection is applied at that zone and results/checks are only significant for that zone. Other
combinations of loads will lead to another buckling shape thus to each load combination a specific
buckling shape must be assigned and a steel code check should only be used on those members on
which the imperfection applies. Since the applied buckling shape corresponds to a global mode, failure
of these members will lead to a collapse of the structure.

6.3 Non-Linear Stability

As specified in the assumptions of the previous paragraph: a Stability calculation is by default a linear
process. Non linearities like friction supports, pressure only supports... are not taken into account.

Beam non linearities are also taken into account in the linear stability calculation.

Specifically for this purpose, Scia Engineer provides the use of a Non-Linear Stability Calculation. This
type of calculation has the following additions to the Linear Stability calculation:

- Local Non-Linearities are taken into account

2" Order effects are taken into account using the Modified Newton-Raphson algorithm.

Modified Newton-Raphson follows the same principles as the default method but will automatically
refine the number of increments when a critical point is reached and will only update its stiffness matrix
every N iterations. This method can therefore give precise results for post-critical states.

Scia Engineer will perform a 2" Order calculation taking into account Local Non-Linearities. After this
calculation, the resulting deformed structure is used for a Stability calculation. As a result, the Critical
Load Factor of the structure is obtained for the structure including Non-Linearities.

To activate the Non-Linear Stability calculation, the functionalities Stability and Nonlinearity > 2 nd
Order — Geometrical nonlinearity  must be activated.

Project data m

Basicdata Functionality ] Loads] Combinations Protedian] Mational Annexes

Chymamics |I:I B Monlinearity
Initial stress a Initial deformations and curvature |o
Subsail [m} 2nd order - geametrical nonlinearity =
Manlinearity & Beam local nonlinearity O
Stability e} Suppaort nonlinearit/Soil spring m}
Climatic loads a Friction support/Sail spring o
Prestressing [m} B Steel
Fipelines a Flastic hinges o
Structural model a Fire resistance a
Parameters o Connection maodeller o
Mokile loads [m} Frame rigid connections m}
Overview drawings o Frame pinned connections o
LTA-load cases ] Grid pinned connections a
Bolted dizgonal connections o
Expert system m}
Connection ronodrawings o
Scaffolding m}
LTE 2nd Order o
Arcelor O

Ok | Cancel
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In addition, Support and/or Beam local nonlinearities can also be activated.

The choice of the 2™ Order Theory, the amount of increments and the maximal amount of iterations
can be specified through Calculation, Mesh > Solver Setup.

[Isolver setup

= Solver
Adhvanced solver ogtions O
Froper FEM analysis of cross-section parameters ( b Ay, Az ) O
Meglect shear force deformation [ Ay, Az 2> A0 =
Type of sakver Direct L]
Mutnber of sections on averadge mermkber 10
Maximal acceptable translation [rm] 1000.0
Maximal acceptable rotation [mrad] 100.0
B Nonlinearity
Maxirmum iterations 50
Geometrical nonlinearity - 1. order Mewtan-Raphson ~|
Murmber of increments b

Coefficient for reinforcernent 1
B Stability
Murmber of critical values 1

d| & @] [ ] coe

Since the non-linear stability calculation automatically implies the Modified Newton-Raphson method
for the solver, this method cannot be chosen here. The reason why this field is available is to perform a
normal 2" Order Calculation using Modified Newton-Raphson instead of a Stability Calculation.

Since the Modified Newton-Raphson method also applies the loading using increments, it is important
to set a right amount of increments. This implies that it is advised to choose the Newton-Raphson
method so the user has access to the number of increments.

Example: Stability Falsework.esa

In this example, a Stability analysis is carried out on a large falsework structure measuring 15m x 15m
x 12m.
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formwork and concrete for a total loading of +/- 18.000

weight,

Non linear and Stability

TN SV - N o

I A T A v T

Beam neninear;

All diagonals of the structure have been given a gap of 1Imm.
ity SPCD1 Gap
v

First a Linear Stability calculation is carried out to evaluate the critical load factor. The number of 1D

elements is set to 5 to obtain good results without severely augmenting the calculation time.

The structure is loaded by its self

tonnes.
The following result is obtained:
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Critical load coefficients

Critical load coefficients
M f
- I
Stability combisation : S1
1 1,95

The critical load factor is smaller then 10 which indicates that the structure is susceptible to 2" Order
effects. Therefore a 2™ Order calculation is carried out using Newton-Raphson . The number of
increments is set to 5 and the maximal number of iterations is set to 50.

The 2™ Order calculation leads to the following message:

T‘ FEM solver - 64 bit., gz |

Calculation  MNonlinear

m] %E

0,030
0,025+

0,020+

FEM solver - 64 bit, [

Structure is unstable, Unstability found
' L in node no, K1310, direction X

Mode: 2287 Increment : 245

Mz displ. : | 0.00290 [m]  Herstion: 2

Stop after this nonlinear combination no. 1. I

This implies that the 2" Order calculation does not converge to a result but leads to instability. The
question now rises as to what causes this instability.

This is the point where the Non-Linear Stability calculation comes in. During the Linear Stability
Calculation, the Gap elements on the diagonals of the structure were not taken into account. A Non-
Linear Stability calculation takes into account both 2" Order effects and the Gap elements.
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The Non-Linear Stability Calculation gives the following result:

Critical load coefficients

Critical load coeflicients
M f
Il

Stability combination : 51
1 0.26

This result gives a very important conclusion: the structure including all Gap elements is not capable of
supporting the loading. Only 26% of the loading can be supported before instability occurs. This is the
reason why the 2" Order calculation does not pass.

When Local Non-Linearities are used, it is mandatory to execute a Non-Linear Stability calculation to
draw correct conclusions concerning the global buckling of the structure.
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7. Troubleshooting

In this final Chapter, some common failure messages are given which can occur during a non-linear
analysis.

7.1 Singularity

Singularity problems occur frequently during a non-linear calculation. Messages of the following type
are generated by Scia Engineer:

FEM solver

'SCIA.ESA PT
'j Structure is unstable. Unstability found 'E Caleulation aborted.
- in node no. N, direction fiY. - Singularity in node : N6 [£.000,0.000,4.000]

The cause of these messages can be the following:

- The structure is a mechanism: check supports, hinges, unconnected members,...

- The structure becomes a mechanism by eliminating elements (members, supports,...) Examples
include tension only diagonals which are all eliminated, a subsoil (only compression) which
comes entirely under tension,...

- The structure becomes unstable due to the creation of plastic hinges.

- The entire structure or part of it buckles. In the stiffness matrix this implies that Kg > Kg

- The instability is caused due to small section properties of manually inputted cross-sections. In
many cases, the torsional resistance I, is too small.

- As explained in the theory, the Timoshenko method is not suitable when the normal force in a
member is larger then its critical buckling load. In this case, Newton-Raphson should be applied.
To find out which cross-section causes this problem, the sections can be modified alternately
until the 2™ Order calculation passes.

7.2 Convergence

If, during a non-linear analysis the criterion of convergence is not met, messages of the following type
are generated by Scia Engineer:

f m ] "
SCIA.ESA PT o FEM solver >
' Efrala o e dhe) ' The suffident predsion was not reached in the iteration.
E ; ; . ’: If increasing of 'Maximum iterations’ does not help,
L Maxdmal number of iteration was reached. = the construction probably cannot bear the given load.

7
Do you accept such results 7 B e e

The cause of these messages can be the following:
- Too few iterations have been specified in the Solver Setup.

- The structure is close to instability.
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100

Cyclic elimination of members or supports: the elements are eliminated during an iteration and
are re-instated during the following iteration.

To examine this in detail, the calculation can be executed for for example three iterations: take
iteration i-1, i and i+1 and compare the results.

In these results, there will be a difference in one member (for example in one iteration the
member is in tension, in the following iteration it is in compression).

If the non-linear stability calculation does not converge, make sure 2" Order is activated as
functionality.
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